/Ww,zy K Chlt s s oAk, A S SC
(—7 , / /45 z ! )4 ,ﬂ_,,\

SPACE SCIENCES
ABORATORY

EFFECT OF WAVE LOCALIZATION ON PLASMA INSTABILITIES

William Kirk Levedahl

Department of Physics
and
Space Sciences Laboratory
University of California
Berkeley, CA 94720

(MASA-LP=196575) @ TF00T e wfAvE R LA
ACALYLATIOY 21 PLASMA INSTALTLITIES 2n.c.

Thesia (Zatifornias unive) 1725 Lol 201
ungto
VA A 32 e ?
Ph. D. Dissertation October, 1987

__ _UNIVERSITY OF CALIFORNIA,BERKELEY__



Effect of Wave Localization

on Plasma Instabilities

William Kirk Levedahl

ABSTRACT

The Anderson model of wave localization in random media is invoked to study the effect of
solar wind density turbulence on plasma processes associated with the solar type III radio burst.
ISEE-3 satellite data indicate that a possible model for the type II process is the parametric decay
of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion-
acoustic waves. The threshold for this instability, however, is much higher than observed Lang-
muir wave levels because of rapid wave convection of the transverse elecromagnetic daughter
wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves
near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with
observed density' fluctuations ~1%. Numerical simulations of wave propagation in random media
confirm the localization length predictions of Escande and Souillard for stationary density fluctua-
tions. For mobile density fluctuations localized wave packets spread at the propagation velocity of

the density fluctuations rather than the group velocity of the waves.

Computer simulations using a linearized hybrid code show that an electron beam will excite
localized Langmuir waves in a plasma with density turbulence. An action principle approach is
used to develop a theory of non-linear wave processes when waves are localized. A theory of
resonant particles diffusion by localized waves is developed to explain the saturation ot the beam-
plasma instability. It is argued that localization of electromagnetic waves will allow the instability

threshold to be exceeded for the parametric decay discussed above.
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1. Introduction

In the usual picture of weak plasma turbulence theory, the elementary excitations are taken to
be plane waves that propagate unimpeded to infinity. These elementary excitations are the standard
plasma waves: Langmuir waves, ion-acoustic waves, electromagnetic waves, etc. (Tsytovich, 1977).
The plasma which supports the waves is assumed uniform, infinite and homogeneous except for the
possible inclusion of a constant uniform magnetic field. Density gradients or fluctuations are
treated as weak perturbations which refract waves smoothly or cause scattering of one elementary

excitation into another.

The picture that waves are freely propagating for times in the remote past and far tuture, and
that interactions all take place in some intermediate time is a fundamental assumption in weak and
multiple-scattering theories. On the other hand, a Langmuir or electromagnetic wave which ori-
ginates and propagates near the critical density will be strongly scattered and modified by relatively

small density fluctuations, and the scattering theory picture may not be valid.

In his famous 1958 paper, P. W. Anderson investigated another picture for the clementary
excitations in a randomly disordered system. In studying the absence of spin diffusion in silicon at
low temperatures, he suggested that spin wave excitations, when the localized site frequencies are
randomly distributed, are time-stationary wave packets localized in space with approximately
exponential fall-off in amplitude away from the site of localization. The Hamiltonian he considered
is equivalent to that of a wave excited in a medium with a random index of refraction, and so is
equivalent to the problem of a wave in a plasma with a density that fluctuates randomly about some

average density.

In this thesis we adopt the point of view that the elementary excitations of a plasma with tur-
bulent density variations are, in fact, weakly interacting localized (and therefore quantized) waves.
The significance of this picture is profound. It suggests that a gentle bump-on-tail instability will
excite localized modes with central wave numbers resonant with the beam. Therefore the amount

of beam energy extracted should be greatly reduced in comparison with a beam propagaling
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through a uniform plasma. Wave-wave coupling processes will be modified. First, coupling con-
stants must be reduced by a geometric factor that accounts for the spatial overlap between the cou-
pled waves. Second, there is no wave convection for the localized waves, so the threshold for 3-

wave processes is correspondingly modified.

One significant difference between a turbulent plasma and a crystalline lattice with random
impurities is that the former does not have a time stationary Hamiltonian. Our point of view is that
the turbulence is externally or self-consistently driven and independent of the waves in which we
are interested. The effect of time dependent turbulence on localization is therefore an essential

consideration.

The motivation for this study is to attempt to clear up certain problems in the understanding
of the type IIlI solar radio burst. We adopt the model for this phenomenon presented by Cairns
(1984) and Lin et al. (1986), which is, in brief, the following. High energy electrons, accelerated
by solar flares, stream through the solar wind plasma and excite Langmuir waves through a gentle
bump-on-tail instability. These Langmuir waves then decay parametrically into an ion-acoustic
wave and an electromagnetic wave (at the local plasma frequency). These electromagnetic waves
are then observed at the earth by microwave receivers as the narrowband emission that ts charac-
teristic of the type III burst. Although there is strong experimental evidence for this process, some

theoretical issues remain unresolved.

One remaining issue is the ability of the beam to propagate out to 1 AU without disruptipn
while maintaining a well-defined positive slope. Another is that the electromagnetic decay is a
convective instability with growth lengths larger than are consistent with the problem. A third is
the spikey nature of the wave envelope of the Langmuir waves. It has been apparent for some time
that the resolution of these difficulties must lie in density inhomogeneities in the solar wind plasma.
While evidence for the existence of the density turbulence is strong, the details of the turbulence
are still unclear. Efforts to understand the effect ot the turbulence within the framework of tradi-
tional weak turbulence theory have generally required very special assumptions about the nature of

the density fluctuations and often more problems are raised than solved. Localization, on the other



hand, is a universal characteristic of random media (for sufficiently strong turbulence), as will be

discussed, and any theory must consider the effects of this as well.

The effect of density fluctuations on 3-wave processes has recently been discovered to have a
pronounced effect in another context. Rose et al. (1987) have shown in plasma simulations that the
ion-density fluctuations produced by Stimulated Brillouin Scattering, when sufficiently strong, will
spatially localize the Langmuir waves produced by Stimulated Raman Scattering (SRS). Since the
allowed Langmuir waves are now quantized, the SRS instability may or may not be suppressed,
depending upon whether any of the quantized Langmuir waves satisfy the 3-wave frequency and
wave-number matching criterion. In this case, however, the trapping of the Langmuir waves is
within a single density depression and can be interpreted semi-classically, which will not be the

case for the problem considered in this thesis.

This thesis is organized as follows. In order to motivate this thesis and set the problem in
context we begin in section 2 with a review of the type III solar radio burst problem, presenting

essential satellite data and current models that attempt to explain these data.

In section 3 we discuss the action principle in plasma theory which will provide the theoreti-
cal framework for the remainder of the thesis. In section 4 wave propagation in random media is
discussed. Multipie scattering theory is reviewed to explain why it is inadequate for this problem.
The Anderson model of wave localization is then discussed. The results of 1-D numerical simula-
tions of the time evolution of gaussian wave packets in random media are presented in section §.
These simulétions verify the localization length predictions of Escande and Souillard (1984). The

effect of mobile density fluctuations is also studied in secion 5.

The bump-on-tail instability in random media is investigated in section 6. A theory for this
instability is developed which takes into account that the excited waves are localized by the Ander-
son mechanism. Results of a 1-D hybrid simulation are presented verifying this model. A theory
for the saturation of the bump-on-tail instability by resonant diffusion of beam particles by local-

ized waves is developed and compured with numerical simulation and experiment.



Section 7 begins with a discussion of 3-wave decay processes based on an action principle.
Convective effects in homogeneous media and in media with a uniform density gradient are dis-
cussed to conclude that the 3-wave process under consideration has too high a threshold. Previous
work in 3-wave processes in inhomogeneous media is reviewed. Implications of Anderson locali-

zation for the 3-wave process are then developed.



2. Type III Solar Radio Burst — Observations and Current Theory

We begin with a discussion of the type III solar radio burst phenomenon and a presentation
of current satellite data. The arguments in favor of a 3-wave decay model for the phenomenon are

reviewed, and experimental measurements of density fluctuations in the solar wind are discussed.

The type 111 solar radio burst is one of the oldest problems in radio astronomy; however, it is
not yet understood in theoretical detail. Originally discovered by Wild and McCread_\' (1950), the
phenomenon is observed by an RF spectrograph at the earth as a narrowband RF emission, starting
at ~250 MHz and decreasing over a time period of ~5-15 sec down to ~5 MHz. Observations at
lower frequencies using ground-based systems are not possible because of ionospheric reflection.
Satellite observations have extended the lower range down to ~10 kHz. Very often emission at or
near the 2nd harmonic is observed simultaneously with the above. Wild (1950) proposed that the
burst was caused by a disturbance which started low in the solar corona and propagated outward,
exciting plasma oscillations of progressively decreasing frequency. Later it was established that the
disturbance propagates at a velocity ~c/3 from which it was inferred that the disturbance was
caused by electron streams (Wild, 1954). More recent satellite observations, discussed below, have
confirmed that the source of the burst is associated with electrons propagating along open magnetic
field lines away from the sun. An interesting peculiarity is that there are some bursts whose fre-
quency decreases and then increases again. These are interpreted as bursts due to electrons travel-
ing on closed field lines associated with coronal loops and returning to regions of higher plasma

density near the sun.

IMP-6 satellite observations at 1 AU (Fainberg and Stone, 1974) showed that the type III
radio emission extends down to ~30 kHz and the burst duration extends to many minutes or hours.
Fainberg and Stone were also able to show that the emission region follows the Archimedean spiral
of the open magnetic field lines predicted by Parker (1958). More recent satellite observations in
connection with observations from ground-based solar observations have established that electrons

with energies from a few keV to ~100 keV, accelerated in solar flares, are responsible for type 111



emission.

The most detailed data on the type III solar burst come from the ISEE-3 satellite in orbit at
the Lagrange point ~258 Ry upstream (towards the sun) from the earth. The satellite carries the
University of California solar electron experiment, which provides electron energy measurements
from 2 keV to 1 MeV, and the joint TRW-JPL-Iowa plasma wave instrument which provides elec-
tric field measurements in frequency channels from 17.8 Hz to 100 kHz. Lin et al. (1981) were
able for the first time to measure the electron distribution function parallel to the IMF (interplane-
tary magnetic field) and show that it develops a well defined bump-on-tail distribution. This study
was continued and results more fully interpreted by Lin et al. (1986). These results torm the basis
for the rest of this thesis and are discussed in detail here. For detailed history of type III observa-
tions with pertinent references see the review by Goldstein (1983). We shall next discuss the data

from the Lin et al. (1986) study for a typical solar type III radio burst.

Type OI Event — 11 March 1979

Table 2.1 shows typical plasma parameters for the ¢event. Figure 2.1 shows the high-energy
non-thermal electron flux associated with the event along with electric field measurements for the
11 March 1979 event. The emission in the 100 kHz channel starting at ~10:40 UT is characteristic
of the type III emission. It is interpreted as radio emission upstream of the spacecraft which pro-
pagates to the spacecraft. Onset of emission at lower frequencies occurs later. Activity in the 17.8
kHz channel, corresponding to the local plasma frequency, occurs with the arrival of electrons in
the 8.5 keV channel and corresponds to times when a positive slope bump-on-tail is observed in the

reduced parallel electron distribution function shown in Figure 2.2.

Figure 2.3 shows a portion of the same event in high time resolution. The important points
to observe are the intense spikiness of the Langmuir waves in the 17.8 kHz channei, and the coin-
cidence of activity in the 100 Hz channel with the most intense spikes of the Langmuir waves.
Early on there was some ambiguity about whether the radiation observed by satellite is fundamental

or 2nd harmonic emission, but it seems certain from these data that the emission is fundamental



emission.

The following assumptions are made in interpreting the above results. The dominant wave
number for the Langmuir waves is given approximately by the beam resonant wave number
ko= w,/v, where v, is the beam velocity. The ion-acoustic waves observed in the 100 Hz channel
are actually much lower in frequency and are Doppler shifted by convection past the satellite by the
solar wind, i.e., ® =+ k VgywcosO (8 is the angle between the solar wind direction and the inter-
planetary magnetic field). Assuming o <« w’, one calculates the wave number for the ion-acoustic

waves as

k (O]
$= VSWCOSO )

observed

The actual frequency is then inferred from w,=k, c..

Based on the above data Cairns (1984) was the first to propose that the important emission
mechanism for the type III emission is the parametric decay process L (Langmuir) — 7T (transverse
electromagnetic) + § (ion-acoustic). The argument was based on considering the volume. emissivity
{brightness temperature) of various 3-wave processes. The weak turbulence process L - T + S
(random phase approximation) produces emissivities that are far too small. Further evidence for
this process was observed in the experiment of Whelan and Stenzel (1985). In this experiment
Langmuir waves were excited with a weak beam. Electromagnetic radiation at the plasma fre-
quency was observed to occur with growth that closely followed the growth of ion-acoustic waves.
The ion-acoustic waves were observed to have a wave number k = k;, the wave number of the
Langmuir waves. This process was also observed in a 2-D numerical simulation (Pritchert and

Dawson, 1976); however, they interpreted it as a two-step process:

L—->L"+S

tollowed by

L+S—>T.
In space, however, the threshold for the process L — L’ + S is not satisfied by several orders of

magnitude (Lin et al., 1986).



A fundamental difficulty with this interpretation is that in homogeneous media the process’is
in fact a convective instability, since the threshold for absolute instability is not exceeded as a
result of rapid convection of transverse wave energy and the high damping rate ot the 1on-acoustic
waves. This is an involved argument and will be taken up again in section 7.2. In fact. the solar
wind is not uniform and we will argue that the solar wind density turbulence is fundamental for

understanding the type III process.

We note briefly that the frequency and wave matching coupling conditions will give a
daughter ion-acoustic wave with wave number k = k;. The transverse wave will be polarized with
the electric ficld along the direction of the Langmuir pump and propagate transverse to this direc-

tion with wave number

9 2
_ 3vinki CVp

2
2 2
¢ Vin

k

2
3

e

(Lin et al., 1986). We note that

kT<kL and (07'=0)L+w55wl_.

This is discussed fully in section 7. For the March Ll event this gives Ay =360 km.
Many efforts have been made to understand the type III mechanism as the result of a modula-

tional instability leading to soliton formation and collapse. The experimental evidence does not

support this, and furthermore the threshold condition

2

Eo

Ak Ap)?,
87rnkT>3( k 4p)

where Ak is the half width at half maximum of the spectrum of beam excited Langmuir waves is
not satisfied. This is a complex subject with a very extensive literature, and shall not be discussed

further here (but see Lin et al., 1986 and refcrences therein).



Solar Wind Plasma Density Fluctuations

Figure 2.4 shows a 3-hour time averaged power spectrum of solar wind density fluctuations
that was obtained by Celnikier et al. (1981) by measuring the phase shift in a radio beam propagat-
ing berween the two satellites ISEE-1 and -2. While fluctuations occur at all wavelengths, it is par-
ticularly noteworthy that fluctuations with wavelengths of ~100 km have 8n/n>1%. Little is
known in detail about these fluctuations, and there are no results available simultaneous with a type
III burst. On the other hand, density fluctuations of this level appear to be a universal teature of
the solar wind, confirmed both by scintillation measurements (Coles and Harmon, 1978) and by
recent Giotto satellite data (R. P. Lin, unpublished data). The fluctuations seem to be nearly isotro-
pic with a ratio of fluctuations parallel to the interplanetary magnetic field to lhése perpendicular
to the magnetic field being less than 2:1. Although these fluctuations may be a kinetic dritt wave
instability (Mikhailovsky, 1983) resulting from initial solar wind inhomogeneities at the corona,
magnetic field fluctuations suggest that they might be electromagnetic in origin (M. Goldman,

private communication).

For some time now there has been an awareness that density fluctuations must play a role in
the type III problem. The first problem that has bothered people is that Langmuir waves come in
clumps or packets ~70 km in extent (see Figure 2.3). Since the electromagnetic radiation is very
uniform in time (i.e., Figure 2.1, 100-31.6 kHz channels) one concludes that this clumpiness is spa-
tial rather than temporal. Smith and Simes (1977) studied the propagation of Langmuir waves
through a turbulent plasma using ray-tracing techniques to conclude that enhancements and reduc-
tions would result due to random ray focusing. They concluded, however, that the main cause of
the clumping was that the rays would be resonant with the beam leading to growth in certain
regions. Implications of this reasoning for 3-wave processes have been examined by Melrose et al.
(1986). The remainder of this thesis is an effort to understand the etfect of density turbulence in
detail. In particular we will argue that the correct effects of the density turbulence can only be
predicted by studying the full wave equation in random media, and that ray tracing is not a satis-

factory approximation when attempting to understand wave behavior near critical density.
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It should be noted that much of the eftort of solar radio astronomers has employed ray tracing
techniques to map observations at the earth back to the source region in the solar wind. Although
much of this work is probably valid when identifying source regions, conclusions about the exact

size or geometry of source regions is questionable.
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3. Theoretical Introduction

In order to make theoretical progress with this problem we use an action principle approach
for a wave-plasma system (Dewar, 1970, 1972,1973; Johnston and Kaufman, 1978a,b, 1979; Kauf-
man et al.,, 1984; Crawford et al., 1986; Similon et al., 1986; Kaufman, 1982, 1987). In this

approach we begin with a many particle Lagrangian

=2 [—"'—"x?—fs.- -A(zi)—e.-wx,-)] - 3o Px0ER- 1821 (3.1)

where Z represents a sum over all particles in the system.
i

This may be re-written, using a canonical transformation, as

L=3 [p,viu—h,- (x.-,p‘-;.z;u.-))] -—;;jdk- [,E|z_ '8 P] 32

where

2

1 €
[1‘.=7— (pi—'—A(X,')] +€ ¢ (x;)
2m c

is the single particle Hamiltonian. The least action principle with this N-body Lagrangian, in prin-
ciple, determines the time evolution of any (non-relativistic) system of interacting particles and
electromagnetic fields.

We shall divide the particles inco groups according to the following distribution functions:

1)  fo.{x,v,r)=non-uniform solar wind background electron distribution;

2)  foi(x,v,1) =non-uniform solar wind background ion distribution;

3)  foelx,v,t)=electron beam distribution function.

In the particular type III problem, the beam density is 5-6 orders of magnitude below the
solar wind density, and therefore, we make the following separation of terms. We define £5C, BSC,
ASC, and ¢%C to be self-consistent fields arising from strong turbulence associated with non-

uniformities in the solar wind, and then define EW=F - ES¢, BMW=p —B5C 4 =4 - A5C and




p(V=9 -0

We use these definitions to expand the Lagrangian as:

2 2
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e; i 5 1
+Z ;?muWNm—a_&IMer-qum —Eﬂﬁxbsmﬁ-mmﬂ}
tag :

2m,;

+2—ﬁ7’MWnyA“m)—E%LRMEWE“~BWB“) (3.3)
i mc

. Pi €; 1 €; Dy, 2 2
+Z p,--x,-—'2—m—_+ﬁpi A -~ 2. o2 TAD ()12 - ¢ Dy
iy 1 i - .

i

ol

€; e; i
+3 | == p A+ —=5 AV)A(x) - ———
| mic m;c” 2m;c”

i i <m;

ASC(x,)1% - e,05%x,)

where igg refers to background particles and i, refers to beam particles, and i =igg + i,.

Let us begin to investigate equation 3.3. We choose our definition of the self-consistent
fields such that in the absence of beam particles, the first line completely describes the evolution of
the solar wind background particles and their self-consistent fields, i.e., variations of the first line
with respect to A%C, ¢5€, x, and pgg vanish. In general, for density distributions and magnetic
fields present in the solar wind, this is an intractable and unsolved problem in strong turbulence

theory which will produce a whole zoo of drift waves, magneto-acoustic waves, etc. We do not

discuss this part further, but imagine the problem solved, giving us the turbulently fluctuating back-
ground distribution functions and self-consistent fields fo, (x,v. ), fo,(x.,v,1), ASC(x,t), and

¢5C(x,1). We shall be concerned with the further evolution of the system due to other waves and
the beam particles, having assumed that we can separate out the strong turbulence portion of the

problem (not amenable to an order by order perturbation treatment).
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In typical approaches to such problems the Lagrangian is divided into a time averaged part
and a fluctuating part. The time averaged part is defined as

— 1 T
L=?LL

and the fluctuating part as

L=L-L.
A suitable canonical transformation will transform the fluctuating part to higher order in the expan-
sion, as discussed below. The order of a term in the expansion is given by the sum of the powers
of the field quantities. In the approach developed by Johnston and Kaufman (1978), this transtor-
mation is accomplished by a Lie transform on the particle coordinates x;, p;, giving a time averaged
(guiding center) part plus a higher order term that will involve the electromagnetic fields. The
Lagrangian, expressed in the new variables, is then solved, order by order, using a least action prin-

ciple.

Thus we define the transform of a function on phase space (x, p) as (Cary, 1978; Licitenberg

and Lieberman, 1983).

for any given w=w(x,p).

In this transformation scheme the new coordinate variables become

and the particle Hamiltonian is

K=elH
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if H is ordered,
H=HO+HD+H®
then we define terms in the transformed Hamiltonian:
KO =g
KD =gy 1 g®

K®=H®+LH”+%L2H@ (3.4

m”=%myw+%ﬁym+uwaag

In our problem we shall not consider terms over 3rd order. We then have the action

‘ B
§= j,o dt [Z pi-x; —k; (xnpivA)_Lﬁclds]

Where Lg.4, is independent of the particle coordinates and therefore is unchanged by the Lie

transform. This transforms to

. , )
S= dt [zP,'X,'—K,'(Xi-P:;A)_Lﬁelds} .
0 :

We choose w such that KV vanishes, or HV=~{w f1°}. Since, in fact, {w, H%} = %— for

4
unperturbed trajectories, w= —I HMdr, integrated over unperturbed particle trajectories
Py
X=Xo+_'t; P=P0.
m

The third line in equation 3.3 will time average to zero (since we assume that the turbulent
spectrum means that there is little self-consistent field energy at a frequency and wave number
resonant with the wave under consideration. This is supported by /. Cairns’s (1984) argument that
random phase processes do not explain the intensities observed. We shail also assume that the last
line in equation 3.3 can be ignored. This is equivalent to assuming that the turbulent fields have
little energy resonant with the beam electrons, and so therefore the effect on beam propagation can

be ncglected. When the Lie transform is applied we will get a term of the form

3

o FAM), A (x,), ASC (x)) .
3

pom;
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where F is a function linear in its arguments. This term is very small compared with those of the

2nd line also quadratic in A", and therefore can be ignored. We shall from here on ignore ions in

] od 2
—_ . . . . e’ e” e
the quantities involving wave-coupling terms since the coupling terms go as — and »—,

m m, m

Wave Propagation in a Turbulent Plasma

With the beam switched off, the evolution of a wave of sufficiently small amplitude that its
effect is negligible on the development of the strong density turbulence, will be governed by the

second line of equation 3.3:
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If we take

HO = z (me_.icl’i A () - €000

then w = —r dt H) (Johnston and Kaufman, 1979).

Using this, we find

K= {w,H“)}

1
2

and

h l ) Cz 1 2 l 2 1)y2 0y2
= 2 -3 FAM 1= — J 2 VEDI2 - 18U
S J"o |y tw H } T 2m;c? () ZRJ *

Every term in this expression is quadratic in the fields. If we can use the eikonal representa-

tion of a wave, then

A =A" eia(x,:)+g°e-.‘e (x,t)’
where 6 is a rapidly varying phase and A(x,t) an amplitude that is slowly varying in time and

space. McDonald et al. (1985) have shown that this is equivalent to

€
s=jdrd3,m‘(k,w; X, 1) Dk, 0 x, 1) Ak, x,t)
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>
where D is the normal dispersion tensor. Variation with respect to the ficld amphitudes then gives

38 pig
2 0= :, Ak, ,
=0= D (k, w) _(L w)

which is the usual dispersion relation.

For example, if we only consider electrostatic waves of the form

o=9¢ =y oc

then

.~ ikt —ot)
ige 7

w= E ej—g—————+cc
B kv -

and

1 1 5 ,
S=J'dt?{w,H‘}-—8—uJ‘d'le¢l-

Using the Vlasov representation of particle phase space density:

z = Z Id’x > vE(x-x)8(v—v)= J’ d3x d3v f(xvit)
we find
2,2 2 -
s=farfare B2 | [ ary 225 {%‘j‘—;’))—l . (3.4)
The quantity in brackets will be recognized as e(4, w), familiar from the usual plasma Kinetic
theory (Lifshitz and Pitaevskii, 1981). It should be recalled in examining equation 3.4 that this
does involve the trbulent particle motions, since f (x, v, ) involves the instantaneous particle posi-

tions and velocities.

While the Lagrangian approach does lead nicely to a dispersion relation in k-space in the uni-
torm dcnsity case, it does not immediately give us a convenient equation for the time dependence
of wave amplitude in the turbulent case. Therefore, we back up a step and redo this part of the
problem using fluid equations of motion. (Nicholson, p. 271). Actually, the fluid equations of

motion follow from a Lagrangian such as equation 3.2 by taking suitable moments of the
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distribution function and expressing them as fluid quantities (Dewar, 1970). For the case of longi-

tudinal waves:

on, _ v

at == ﬂ,\)
'al=-'£E- YkT Vn,‘
ot m mn,

V-E=-4re(n,-n;)
We will further assume that n; = n;(x, v, t) is already known from the strong turbulence prob-
lem and that quasi-neutrality holds. This latter condition is quite good in the type IlI problem.

since Ap ~22 m, while Ay ngmuir = 2.8 km.

We get
92 4re’n; wT 3E .
—(V . E)=V . |- E+— —| ~drneV-([V-(n,v)]v).
ot m m  Qx-

The last term is O(v?) and will therefore be ignored. Therefore, for longitudinal waves

9> 2 » 0’E
Py =-w,(x)E +3vj Py
where pull =3v3.

m
Beginning with Maxwell’s equations, it is elementary to derive a similar equation for elec-

tromagnetic waves

JO*E
ax?

9°E
a2

) e}
-——cop(.\)+c

2

. 4re . .
where again wﬁ(,\')s n;(x, t) is determined by the strong turbulence problem.

The properties of these wave equations form the content of the next chapter in Anderson
locatization. Upon concluding with that, we will return in chapters 6 and 7 to our Lagrangian to
understand the beam-plasma and wave-wave interactions.

We discuss, finally, our assumptions about the geometry of this problem and the ettect ot
magnetic fields. At 1 AU, the IMF has an average value of Sy (ly=1x 10-3 gauss). An electron

plasma wave perpendicular to the magnetic field will have a frequency at the upper hybrid
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frequency.

w?, =w§+ o2 =1.000116 “’3 .
As this 1s much smaller than the fluctuation in the local plasma frequency (~1-2%). due to density
fluctuations, we will ignore this effect. The major effect of the magnetic field will be to constrain
the (weak) electron beam to flow along the magnetic field lines, and therefore the wave vector of

the Langmuir waves is directed approximately along the magnetic field.
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4. Wave Propagation in Random Media

Introduction

A wave with wavelength A, propagating in a non-dissipative three-dimensional medium with
a low density of scatterers with a scattering mean free path /” such that A «!°, will exhibit
diffusive behavior when observed at a distance L >»/°, As the density and strength of the scatterers
is increased the diffusivity will decrease until, at some value of /°~ A, diffusion will cease alto-

gether according to the theory of Anderson localization. The wave will then be localized in space

in a time-stationary quantized eigenstate.

Wave propagation in a collisionless turbulent plasma such as the solar wind may provide one
of the few observable examples of strong wave localization in a classical system. In general it is
difficult to find systems which satisfy the Ioffe-Riegel criterion for localization, namely that the
scattering mean free path should be of the same order of magnitude as the wavelength and that the
dissipation length be much longer £hm the mean free path /” (Anderson, 1985). In a weakly colli-

sional plasma, such as the solar wind, the dissipation rate y for the electromagnetic waves will be

of the order of ;)L ~107'2 and for the Langmuir waves of interest (since A > Ap) —(Z— ~ 1072,
P P

Another factor that makes plasma waves attractive for studying localization is that the dielectric
Ag . . . . . .
contrast - due to density fluctuations, where ¢ is the dielectric constant, can be very large, since

for plasma waves the ensemble average <e>=0 and for electromagnetic waves near the plasma fre-

0)2—(02

quency & ~ ——- is very small.
@y

The condition A ~I* is in fact a weak condition, and values of I*/A as large as 50 have been
observed to produce localization as argued by Trawal et al. (1986), who attributed the observed

vanishing of positron mobility in gaseous helium to localization effects. The ratio /*/A appears to

be within the appropriate range of values for Langmuir and electromagnetic waves associated with
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the type IHI solar radio burst. This is in contrast to the failure to observe strong localization effects
in the propagation of a laser beam through a slurry of small dielectric spheres (Warson et al,
1986). The problem in this experiment was that the dielectric contrast was too low for latex

spheres, and so the mean free path was too large.

Before discussing Anderson localization, we begin first with a review of multiple-scattering
theory in order to develop some of the language which will be important in localization theory and

to show how multiple scattering theory breaks down in the regime where localization is important.

4.1. Multiple Scattering Theory

In discussing multiple scattering theory we rely on standard Green’s function techniques dis-
cussed, for example, in Abrikosov et al. (1975) and applied specifically to the problem of propaga-

tion in random media in Lax (1981) and Rickayzen (1980).

Multiple scattering theory begins with a wave equation of the form

2 .2
%:—w§v+czg—}—"(x)w(x). @.1D

One imagines that as ¢+ — too the wave is in a packet which, however extensive, in a region where

V(x) =0, i.e., no scattering takes place. In this region the wave will asymptotically, as ¢t — —oo,

be of a form
y=yoe T
where i =a.+k%c*. One uses perturbation theory to develop solutions which will again be of

the same form for t+ — oo. A comparison between y(t — —o0), and y(r — o0) gives the scattering
amplitude.

If we Fourier transform equation 4.1.1, we get

[w? = 02— K2 yk) = [v(k - k") w(k") dk’ .
Let us define a Green's function G{(x, x’, ¢, ¢t’) such that
az s 2 P

-2 _wl+c
oz 7 ox*

+V(x)| G =8(x-x)8@—-1").



The significance of the Green’s function is that if we have some initial condition,

yo(x,t =0), then

ly(x,t)sjd3x G(x,x',t,0) wo(x,1=0)

is a solution of the wave equation. We also define Gy (x, x’,¢,¢") such that

ot

2 N N a’.!
[‘a"“’ e

In Fourier space this becomes

Golx=x",1=t)=8(x-x)8(t-1")

[0? - @} - *k?] Gk, w) =1

or

1

22 a2y
0 - w, ck

Golk, w)=
It can be shown that

G (k, @)= Gy (k,@)+ [ dk’ Golk,) v (k= k") G(w, k") .

This can be iterated to for a perturbation expansion in v to obtain

G = Go + Go\’Go + GQ\'G()\'G() + ...

where G, and v are integral operators (or matrices).
One represents G diagramatically as = and G, diagramatically as —>.
@, k ., k

We can represent 4.1.2 as

/
X W K S IaNY
’ [} v, N
—_— = — + — s —
w Rk h wid h + LS LA

where X represents the interaction v. One defines a *‘self energy’’ z (k, w) with graph

_A

Z(&.,w)

such that

G (k, w)=Go (k, @) + Gy (k@) Y, (k@) Gy (k,@) + Go 3 (k) Go(k) D (k) Go(k) + ..

4.1.2)
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This can be solved as

1
Gg' (k,w)~ Y (k)

G (k,w)=

In order to see how this theory works we consider a simple one-dimensional example. Let us
consider a single perturbation in an otherwise uniform medium of the form

vo —1J2<x<1J/2
Vix)= 0 otherwise

the diagrams for the self-energy are

x / ‘ ©o% o(k've’)
‘ ; h,}\\\.k /// :”~\ ~
: ; + 4 \ + rd 1 - + . .o
n-n -k’ een/ -

plus terms of higher order in v.

Using the rules in the above cited references, the first order diagram for the self-energy just
leads to a shift in the average plasma frequency. The second order diagram in the self-energy may

be evaluated as:

1 12
Xk, @)= [dg 1v(q)1 Golk - g, )

1 . . .
where Sal corresponds to the normalization of the inverse Fourier transform, and where
P13

(qzc]

2
v(g)= I-IJZ dxvye'tt= T sin L 5

Therefore,

1 4y sin® (¢l/2)
z(k’w)=’) L."dq[ 20] v - :
=T q o - w; - c(k ~q)*
and then
1
Gk,w)=

wz—wj-—czkz- Z(lc.a))

The pole avoidance procedure is that @ — o + in corresponding to the retarded propagator. For v,
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sufficiently small, we will only be interested in 3 when w?— 2 - c2k?=0. In this case with the

. 272
. Wolc
approximation k,w)= we find
ppr 2k o)z -
Gk,w)= 1 s
2_ 2 22 ivg 12
A —aw, —-C -
P 2 kLc*

And we see that the self energy then represents a lifetime for the excitation.

For a large system with many scatterers we replace % with N, the volume density of scatter-

ers, and we take an ensemble average. Then

<Gk, w)>= 1

i Nvé 12

2%k

o? - wf - k-

In order to ensure that higher order terms in the expansion may be neglected in the self-energy, we

require that > ®« Y @. But by examining the third diagram in Y (k, ®) one estimates that

2(3) Yo Icz
A T2

Vo I2
Therefore, we expect that a perturbation theory will break down when 0

~1. As we shall see

in the next section with vy = 5(0}, this is the regime when Anderson localization becomes important,

and will be the parameter regime of importance for the type III problem.

If we have an initial amplitude w(x,, 7y), we can compute the transport of probability density

as

9 2
Y Fyw(x,t)1°.

Using the Green’s function language

Ly (x, D12 = w50 ' (x,0) = [ d3x0d°xg G (x, 1, X0, 10) W(Xo) W (%0) G “(x, 1, X0, 1) (4.1.32)

The diagram for this is

R SR



(4.1.3b)

where GR=G ==>

is the retarded Green’s function and
GA=G'=<=

is the advanced Green’s function.

Expanding (4.1.3) gives diagrams which include the ‘‘ladder’’ diagrams:

v > N

. ' ' - ' | . ! s
' . h . :
e 0 0 X X x X -+ T’u‘k“
. : ' ‘ ' ¢ '

’ ' o ! : S

> >

and the maximally crossed diagrams:

R
~
~
~

A3

T
) ~
. /
x\‘:.( o~

N3
P A\..

-
Langer and Neal (1966) showed that in evaluating diffusivity in random media these two sets of
diagrams are the most important, and that, in fact, their sum diverges unless one adds in finite life-

times in the unperturbed propagators (the G, or light lines in the diagram).

Particularly important is that the ladder and crossed diagrams interfere constructively for
exact backscattering. This is a consequence of the time reversal symmetry of the backscattering
processes (Gor'kov, 1977). Because this constructive interference is a symmetry that survives
ensemble averaging of the above two-particle diagrams it is expected to be a dominant effect and
lead to enhanced backscattering. This enhancement has been observed recently by Van Albeda and
Lagendijk (1986) in an experiment that measured the backscatter of laser light from a slurry of
glass beads, and is also important in understanding experiments on electron mobility in thin two-
dimensional films. The parameter regime where enhanced backscatter is observable, but behavior is

otherwise diffusive, is often referred to as ‘‘weak-localization.”’
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One of the major difficulties in studying localization effects analytically is that

<G2 G®>#<G%><G®>. Correlation effects are the essence of Anderson localization theory.
Enhanced backscatter, for example, depends upon these cosmrelations. We shall return to the issue

of two particle Green’s functions later in the next section.

Before concluding this section on multiple scattering theories, we mention the effort of
Muschietti et al. (1985) to understand the effect of 3-D density fluctuations on beam-plasma insta-
bilities by considering the Fokker-Plank equation

a,Wk = 2'}'ka + ak, Dﬂ akjW‘. + 8‘,
with

Djl=wp¢ﬂf(‘21—;‘)1; c(q9)q; 9 62k -q),
where ¥, is the Langmuir growth rate for wave vector k, w, is the wave energy density, c(q) is the
spectral density of fluctuations of wave number g, and &, is the rate of spontaneous emission. It
was concluded that the diffusion of Langmuir waves led to the quenching of the beam-plasma pro-
cess in the case of electron beams in the solar wind unless special assumptions aimut the anisotropy
of solar wind density fluctuations are made. This theory is equivalent to a first order scattering
theory, and ignores the possibility that as a result of infinite order scattering effects, a wave may

remain in resonance with the beam for a long time.

4.2. Anderson Localization

As mentioned in the introduction, for sufficiently strong random scatterers waves do not
diffuse in space, but rather are localized into normalized eigenmodes. The theory of wave localiza-
tion in random media was first proposed by P. W. Anderson (1958) to explain the experimexﬁal
result that electron spin polarization diffuses very slowly in highly doped silicon at low tempera-

tures. Anderson studied the model Hamiltonian
iaj=E;ja;+ 2 Vi a @.2.1)
k

where g;(¢) represents the quantum mechanical amplitude at the site / on a lattice, V), is a (weak)




coupling between sites and E; is the local site energy. The crucial point in the Anderson model is
that E; is taken to be a random variable, uncorrelated from site to site. For most of our discussion

the probability distribution for E is:

L _wr<e<wn
W

pP(E)= 0  otherwise
although it is argued that the exact nature of the distribution is of little consequence, the width

being the important factor.

Equation (4.2.1) can be interpreted as the Hamiltonian for an election in a random lattice in
the tight binding model, and therefore has been much studied in the context of solid state theory in
order, for example, to understand the low conductivity of amorphous materials. It is relevant to our
discussion since it is equivalent to the wave equation for either Langmuir or electromagnetic waves

expressed as a finite difference equation.

Localization in One Dimension

Let us start with the wave equation

2
—aaT‘f = 0}(x) ¥ - vV} Vy

where

for electromagnetic waves

v for Langmuir waves

, . , & — L .
and look for time stationary solutions — 5 ‘f’ = w?y. We rewrite this as a finite difference equation

in x where ! is some small length:

0Py = 0l (x) v - 112 (Wl + D+ wlx = 1) =2p(x)) @.2.2)

With the following definitions:

v;i=v ()
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W} EYVia—V;

and 8w} = wl(x;)~ @, where @, is the square of the average plasma frequency, equation 4.2.2

becomes

@y, = (@, + 8 W) Y y; - :—22 (Wi = ¥)) (4.2.3)

In order to understand the nature of localization in one-dimension, we reproduce an argu-
ment, originally due to Mott and Twose (1961) and recast by Escande and Souillard (1986).

The general rule for solving a second order finite difference equation of the form 4.2.3 is to

use a leap-frog method, by which v’ and y are alternately advanced. This gives a solution that is

accurate to O (Ax?) rather than just O (Ax) (Birdsall and Langdon, 1985).

This gives first:

V; , .
-E(1- —E‘{")\V,' SVYin "V “.24)
and second:
Visl =V — ¥ : @.2.5)

where we define

2, 2,2
E=— (@ -aD=k1,

_VL. = M;(X/)
E k22
2_ 2
P

P .
and k2= ———*% . This is strictly a definition and its interpretation as a wave number will be dis-

Yy
cussed later.
We write (4.2.4) as

V; ( I 0
‘V/"+l

and (4.2.5) as




Vs [ 1 1) | v
U’;+1 01 V’/"+1
which gives
Yis 1- E,' 1 ] Y Y;
= =M.
’ ~F. ’ 7 ’
Y+l E 1 v v,

In the case where E;=E, a constant, for all j, M; is easily seen to be a unimodular matrix with

eigenvalues 1% \/Ej +O(E). Iteration in this case gives:

Mn—l ...A"()=A4'l

with eigenvalues e**" = ¢** and thereforc reproduces the solution expected for a uniform
medium.
. . .. wo .
In the case where the E;’s and therefore the M ;'s are random an initial condition, L8
Yo

propagated as

Vi Yo

, =Mij_le_2...M1M0
Vi Yo

We can define a Liapunov exponent

A= lim % Tr (M, M, ..M, Mg)

Nooo

It was first proposed by Mo and Twose (1961) and later proven rigorously by H. Furstenberg
(1963) that for such a set of random matrices A >0 almost cverywhere, i.e., except for E taking
values on a countable‘set {E;}. The significance of this is that almost any initial condition will
developed an exponentially growing wave envelope going as gt at site j. An exponentially

decreasing sequence is developed as follows. If

A1j=jol

then we define
il _ (il ateion



If this is propagated backwards,

Vie -1 pe-1 |
EM!O MJI oM

will be an exponentially decreasing sequence, although if continued beyond w; would again

increase exponentially except for certain discrete values of E. We produce exponentially localized

states by matching solutions from the left and right following an argument due to Mott and Twose

Yo Y2,
(1961). Begin with two initial conditions, say, .| and | , |, where n is large. One then finds
Yo Va2,
Va Yo
=My My |,
Wa Yo
and
¢n \ 1 Va2,
=M, ..M;5,_
¢’: 2n-l V3,
Yan ¢n Ya .
one then adjusts £ and | , | such that | | =| ,|. Heuristically, one expects that this pro-
Van ¢n Ya

duces a discrete set of values for E.

The theory of localized states and the nature of the spectrum in one dimension was put on a
rigorous mathematical basis by Kunz and Souillard (1980). An important point from localization
theory is that in one dimension all states are localized. There are no good analytic expressions for
localization lengths for W/V >1. Escande and Souillard (1985) determined the Liapunov
exponents numerically for the product of random matrices ..M, M,_,...M M, The results are
shown in Figure 4.1. The relevant parameters are

WIE = 80}lk*V},

and

E=k%2.
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The Liapunov exponent is

‘y=

o |~

where & is the localization length, and /. the ‘‘correlation length’’ is the distance over which wg(x)

is constant.

We now consider the correct interpretation of the quantity
kl= (w2 - co,})/v2 .
Clearly, when V; =0 for all j, as we have shown, k is the wave number of a plane wave propagat-
ing in the medium. In the case where & > 1/§, i.e,, where there are many wavelengths (for the
homogeneous case) in a localization length we would expect that the wavelength (measured as
twice the average spacing betwcen points where y =0, say) would remain the same, since the
fluctuating value of the spacing should average to zero, as should be the case when W/E is small.
This is not entirely true, since although the fluctuations are uncorrelated, the localized waves are

correlated with the fluctuations, but this interpretation is bormne out by the simulations in section 5.

The physics of localization in a plasma is as follows for a plasma wave, or for an electromag-
netic wave traveling near the critical density. The plasma may be viewed as a collection of weakly

1

coupled harmonic oscillators. Each oscillator has the resonant frequency w‘f(x)= ,+ 8 cog(x). If
an oscillator is initially set in motion, it will couple to adjacent oscillators. Physically, how well

this energy is coupled to adjacent oscillators will depend on two factors:
(1) The dephasing rate Sw,; — dw,; of the two adjacent oscillators:

(2) The coupling strength ~k2v? which is a which measure of how well one oscillator can
overcome the dephasing tendency of an adjacent oscillator,

dw,
and thus the importance of the parameter —%-.
2.2

k=3

The other important parameter in localization theory is
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which mecasures how near the frequency is to the ‘‘band edge.”” This will be discussed further

below.

Another way of viewing localization is that it is an infinite order scattering process in which
a localized wave is self-consistently scattered back onto itself while the phases of the waves scat-

tered in the ‘‘forward’ direction are random and cancel out when viewed far in the forward direc-

tion.
Kunz and Souillard (1980) have shown that the spectrum of the equation
iy, =Viy+[yvia+vy, —2y]
is :
[0,4) + supp r
where

suppr={V,|Prob[V e{V,y-¢, V0+s}]>0 for all £ >0}
This is equivalent to the set

{0? ] 0*= o} +[-80), S]] +[0,4v¥/17]}

for equation 4.2.3. For waves in a continuous medium, / —0 and the upper limit of this set has no
meaning.
This tells us nothing about the probability of finding a state located within a finite region of

size much greater than the localization length. For example, for weak perturbations, a wave with

approximate wave aumber k will have an energy which is near the value w®=w?- 8w} +k%V?
with very small probability, since the probability of almost every wave peak aligning itself with a

density minimum is very small.

In localization theory an important parameter is how close ? is to the ‘‘band edge,”’ —Sw,f.
The concept ‘‘band center’’ does not have strict meaning since there is no upper band limit as is

the case for a crystalline lattice. By making k2 sufficiently large, we can make the localization

length in one dimension arbitrarily large provided the condition 4212 <« | remains met for plasma
g y large p D P

waves.



Localization in Higher Dimensions

So far we have only considered localization effects in one dimension, and higher dimen-
sionality effects must be considered. Anderson’s original approach was to take the Laplace

transform of (4.2.1) which was written as

5
fi(s)= i +2

is-E; 3 is—E;

Vie Fi (8)

where the initial condition is a;(#=0)=8,j. Solving for f, gives

i 1 Vor 1 1
V +
b % lis-E < is-E “

- Vi, +...
is—-E,

fo(s)=-

+ ;
is—Ey, < is—-E,

The question whether energy remains localized is equivalent to the question whether lim ay(t) 2 ¢
=00

for some £>0. This is equivalent to lim o fo(s)2e. This will in fact be the case provided that

R, (s)—

the self energy at site i =0

< Vor)? Vor Vi Vio
LO=X Tt Y GTEyGs-E, T (4.2.6)

&l

converges. Anderson studied this by considering the probability of the value of very long
sequences when the E;’s are random variables. Anderson argued that the self-energy would con-
verge with probability 1 whenever W/V > (W/V)_, where (W/V),_ is to be determined. Anderson’s
estimate was that (W/2V),.=2K In(W/2V), where K is the connectivity of the lattice (from perco-
lation theory) and is approximately z— 1.5 where = is the number of nearest neighbors. Thouless
(1979) argued that this estimate is high because Anderson assume;d that the contribution of each

sequence was independent. Accordingly, a better estimate is

A more transparent, but less rigorous argument for this is the following: The amplitude on a

neighboring site will be
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Since the values in the denomtnator can range between = W/2, a typical value is W/4. 1f there are

= neighbors then we require

a; 1% 1
—— < —
i 4 Z

n

Even this estimate, it turns out, is high. The most convincing numerical work on this was

done by Yoshino and Okazaki (1977), who solved the Hamiltonian £q, =E, a, - v z a;, where the
/

sum is over nearest neighbors, by diagonalizing the Hamiltonian on a 100 x 100 grid. They found
that for W/V >6.5 a transition occurred between extended and strongly localized states. Thouless
(1979) later argued that when W/V~ 6.5 the state is localized with a localization length on the order

of the size of the system.

Actually, it is believed that W/V =6.5 is a transition point between strongly and weakly
localized waves in 2-D. According to scaling arguments (Abrahams et al., 1979) all states in 1-D
and 2-D are lqcalized, and for 3-D there is a critical value, (W/V), above which states are local-
ized. Licciardello and Thouless (1978), looking at the sensitivity to changes in boundary values,
concluded that 3-D wave functions are apparently localized for the diamond lattice for
9<(W/V).<12 but the localization is slower than cxponential. For the cubic lattice, localization
occurs for W/V =15. This was confirmed in a numerical study by McKinnon (1985) who studied
the scaling with M of the localization length of long I-dimensional chains when M2 adjacent
chains were coupled together using nearest-neighbor coupling. His localization estimates were
again based on a Liapunov exponent estimate. Also of great importance is that the normalized
localization length A=&(M )/M in fact was found to follow the behavior A ~ I/M tor strong locali-
zation (W/V >25), thus suggesting that for strong localization, the localization length is only

weakly dependent on dimensionality.

A significant difference between our wave equation and that of the Anderson theory is that in
our case there is no natural discrete lattice. In a crystalline lattice there is an upper limit on the
wave vector in the unperturbed case corresponding to the first Brillouin zone. For Langmuir waves

or electromagnetic waves there is no upper band edge, and for frequencies high enough, the wave
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will be delocalized (ignoring Landau damping for the moment).

It is not straightforward to compare parameters in the solar wind plasma with the critical ratio
(W/V),. to determine dimensionality effects. The difficulty is a resuilt of / in (4.2.3) being much
smaller than the scale length of the change in vy, i.e., much smaller than a typical wavelength. But

on this scale the density fluctuations may not be (and in the solar wind plasma are not) decorre-

lated, so that m} (x=jl) is not independent from one lattice site to the next. Therefore, this situa-
tion is significantly different from the solid state case where perturbations are (assumed to be) coin-

cident with lattice sites.

We can approximate the situation by imagining that our plasma is divided into a lattice with

pieces of size /. where /. is the correlation length of the density fluctuations. Each piece is then a

separate harmonic oscillator.

s | N\
— —_—
Le

Ar—————————
—
P

X ! 2 3 4

For a state with frequency , the wave number in each piece will be a function of the a); . The

v
coupling between, say, oscillator 1 and 3 through 2 will be 1—‘ where v, is the group velocity for

<

piece 2. Therefore,

wiv = —%

We use v, rather than v when looking at the plasma on a scale / >A. When observed at
small scales / « A, the weak coupling v leads to propagation at the group velocity for distances
>A. Further rescaling will not change the group velocity. Dividing the plasma into pieces larger
than / ~ /. will smooth out the density fluctuations. On the other hand, on these larger scale
lengths, the coupling between pieces becomes a complicated function to account for scattering and

decreased transmission which are strongly dependent on frequency at this scale length.



Using an average group velocity given by

3k v2

@p
s kc?

@p

and using the parameters for the 11 March event, estimating /. ~ 100 km, and

Langmuir waves:
k=23x10"% cm™;
v, = 2.4 x107 cm/sec
wiv =10
for the electromagnetic waves:
k=17x10"7 cm™
, = 1.9 x 10° cmy/sec

W/V =1800

for Langmuir waves

for electromagnetic waves
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dw
" = .01, for the

In both cases, this greatly exceeds even the largest estimates of (W/V).. Our estimates for W/V

here may be too large because of overestimating /. and /2 could conceivably be smaller by as much

as a factor of 25 or greater.

Once establishing that W/V > (W/V)_ so that waves are strongly localized, of more practical

importance will be estimates of W/E and E, the parameters used in the Escande and Souillard

(1985) study.

For the Langmuir waves

g y
WIE=—2 2 =14
a)g 32

for the March 11 event where v, is the beam velocity. Likewise, if we could treat the transverse

waves 1-dimensionally (which we cannot) we would get, using Ay =360 km for the March 11

event:




36

w

I3 =243

-
If /. =100 km, E =3.00, and plot 4.1 gives approximately y=.2. So & =500 km.

A difficulty in making localization estimates for the type II problem comes from the nature
of the turbulent density spectrum, as discussed in section 2, which is that there are large amplitude
long-wavelength fluctuations simultaneous with smaller amplitude, shorter wavelength fluctuations.
If the localization length from the latter is smaller than the correlation length of the former, then it
is the small amplitude short wavelength fluctuations that are important. That this may be so for the
Langmuir waves is evident from the following. Using the 11 March 1979 parameters, if density

fluctuations have a scale length /.=2 km, then E =21. If the localization length & ~ 70 km, then

we estimate from Figure 4.2 that W/E = .5, which gives % = .003, required to give this localiza-

tion length. The actual localization is therefore dependent upon the fluctuation spectrum.

Scaling Theory of Localization

The first successful scaling theory of localiiation was proposed by Abrahams et al. (1979)
who used the scaling of the conductance of a sample with scaling of size to find that all one- and
two-dimensional waves are localized in a random system and that a mobility edge exists in these
dimensions, delimiting a transition between extended and localized states. This scaling theory was
verified numerically by McKinnon (1985), discussed earlier in this section. Although all states in
one- and two-dimensions are localized, Figure 4.2 and the numerical work of Yoshino and Okazaki

(1977) indicate that there is a transition between weakly and strongly localized states.

Another way of viewing the localization problem mathematically is to look at the Green’s

functions which are solutions of

(-c2V24+v(r)=E]1G(r,ro)=8(r—rgp).

They may be written as

wi(r) wa(ro)

Gam (r=ro E)= 2, ¢ tin
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where A/R determines whether it is the advanced (retarded) Green’s function, and « is an eigen-

state label. Now G(r—rg) — 0 as |r—ryl — oo if all the wave functions are localized.

As discussed in the previous section, the quantity

D ~<GA(r=ro, EYG®(r-ro, E)>
where the average is an average over the statistical ensemble {v(x)] is important in the study of

wave localization. For localized states

=lr=roli§

(4
G(r=roE)~*——
( 0 ) r(d—‘)

where d 21 is the dimensionality. An important property of this Green's function is that as the
disorder, W/E, approaches a critical value the correlation length £ becomes infinite. This sudden
transition of the correlation length is a universal property of phase transitions, in this case called
the Anderson transition. By applying techniques from renormalization group theory and the theory
of critical phenomenon Wegner (1982, and references contained therein) argued that the rate of

diffusion for frequencies above thé mobility edge scales as

E- [(E - Ec)/Ec] Y

where v is some exponent (called the critical exponent). In 3-D one gets a ‘‘phase diagram”

-
— .\

LN N
LW NN N
AN NN

- -\‘ \ o (NN
\ N \\\ NN
C/vVv

(Stephen, 1983)

where states lying within the hatched area are extended. In a solid, the boundary is determined by
the dashed line, but as we have discussed, for a plasma, there is no upper band edge, and for

sufficiently large values of E/V states will be extended.

An important conclusion from this is that in 3-D, for any disorder there is some energy

Ec>w§—8w§, i.e., above the band edge, below which the states are localized. To see how this
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might be the case we return to Anderson’s argument and consider the probability of convergence of
the series 4.2.6. As is— E +in, where n - 0 and E — -W/2, the probability of small denomina-

tors decreases and therefore the probability of convergence increases.
We consider the implications of this for the type III problem. The difference between the
frequencies for the waves in the 11 March case are

fl."'fplum:§45 Hz

and

fT—fplum.EZS Hz.

Therefore, even if we greatly overestimated W/V for the transverse waves for typical solar wind
parameters, fr may be below the mobility edge in any case, since fr is so near the ""band edge.”’
In the second place, if f; were in fact above the mobility edge, it would be expected that the rate
of diffusion would be very small. The consequence of this is that a transverse wave that originated
in a given region would still be ‘‘approximately’’ quantized, resembling a given stable bound state
in quantum theory, and therefore, the implications for the type III problem would be little different

than what is discussed in section 7.

Localization and Mobile Density Fluctuation

By applying normalization group techniques Vollhardt and Wilfe (1980, 1982) argued that
the ladder and maximally crossed diagrams (4.1.7) are responsible for the Anderson transition. If
these diagrams are the most important for localization then this provides an estimate for the effect
of the mobility of density fluctuations. The destruction of enhanced backscattering in the weak
localization limit was studied by Golubentsev (1983) who concluded that the loss of phase coher-

ence due 1o the destruction of time reversal symmetry for the backscattered wave is important when

t>17, where 7 is the mean time between wave-scattering and 7, = (37 73)"* is a measure of phase
coherence time when the scatterers are mobile with r, the average time for a scatterer to travel a
distance A, the wavelength of the wave. In this computation Golubentsev assumed that the scatter-

ers had independent random velocities with a Maxwellian distribution. We estimate =&/V, and
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T, = A/c, and define

13 13

Ty 313 32V
aG = —:r—- = = —_—

2
T 52 Csz

where ¢, is the velocity of a density fluctuation. Then we expect localization will be preserved for

og > 1, and destroyed for og < 1.

If we use the ion-acoustic velocity for c,, then for the 4 March event, for the Langmuir
waves oz =.9 and for the ransverse electromagnetic wave og ~ 100. This would indicate that the
Langmuir waves may not be localized, but that the transverse waves probably are. We mention the

following points:

(1) As we shall see in numerical simulations in section 5.2., when localization is very strong,

waves will become localized by a co-moving group of fluctuations and scattered by the remainder.

(2) Although little is known about the source of the turbulence in the solar wind, very often
in plasma turbulence there is an average drift along or across the magnetic field relative to which
other turbulent motion is slow. Thercfore phase coherence may be preserved longer since the ran-

dom component of the velocity can be much less than the average velocity.

(3) This estimate is based on only the destruction of time reversal symmetry of the enhanced
backscattering. In fact, for strong localization, the phase reinforcement comes from a fortuitous
coincidence in the scattering off of different fluctuations in the neighborhood of the localization

peak.

Density of States

Also of importance to us will be the density of states. In this problem we are primarily
interested in waves which are resonant with a particle beam. For this 1o be the case, we expect that
the waves of interest will have a localization length that extends over many wavelengths. The den-
sity of states will determines how many states/volume the becam can resonate with and therefore

how much beam energy will be lost in exciting localized waves.
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For any finite homogeneous system of length L, the density of states is given by the usual
formula
d
% = [ i] @.2.7)
where d is the dimension of the system. For a disordered system and for E < E_, the density of
states corresponding to bound states is discrete while for E 2 E, .Lhere is a continuum of states
corresponding to the freely propagating waves. The question is how closely we can approximate
the density of states by the expression 4.2.7. As numerical work by Dean (1961) has shown, away
from the band edge, the density of states will closely resemble that of 4.2.7, while for frequencies
near the band edge the density of states is highly perturbed. We expect that for waves whose local-
ization length is many wavelengths in extent, the frequency will not be near the lower band edge
(since the probability that the minimums of that density will correlate with an extended wave is

very small). Therefore, we expect 4.2.7 will be close to the actual density of states.

Using the parameters for the March 11 event, the number of states in one dimension in a
. . ., Ay .
localization length & =70 km, resonant with the beam with —— = .05, the apparent width of the
Yy

positive slope region, is approximately

ky§ Av,

= 1.25.
2 v,

Finally we consider the conditions under which localized states are resolvable. The density

of states in 1-D is given by

an _
d

” (4.2.8)

e

which gives dk = 2L—”dn. In order to determine the separation in frequency of modes contained
within a localization length &, we start from:
wl= w} +k2v}, then

dw = v, dk where v, is the group velocity. Using 4.2.8 gives
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2nv ‘
Aw=——%. The length of time 7; to resolve two such states is given by the requirement

§

TR Aw > 2rx, which gives 13 > _§_, which might have been guessed heuristically.
Ve

Summary

We have reviewed Anderson localization theory which leads us to expect that electromagnetic
and possibly Langmuir waves will be localized by the density fluctuations in the solar wind plasma.
Theoretical predictions are consistent with experimental observations. The theory in this section

will be used in interpreting the numerical simulations of the next section.




5. Namerical Simulations — Propagation of Gaussian

Wave Packets in Random Media

We present the results of a series of numerical simulations of the time development in a ran-
dom medium of an initially Gaussian wave packet. While numerical work has been done by others,
in order to study localization the usual approach has been to diagonalize the Hamiltonian to find the
eigenstates of a random lattice. This has usually been in the context of solid state theory and lat-
tice sizes have usually been small (100x 100 grid points) (Dean, 1961; Yoshino and Oka:aki,
1977). To our knowledge time development with mobile fluctuations has not been studied numeri-

cally.

Here we investigate the time development of an initial wave which presumably is the overlap
of many localized eigenstates. In section 5.2 we also investigate the effect of mobile density
fluctuations. This study has used the program PERLOC, discussed in detail in Appendix B. This

program propagates an initial Gaussian wave packet according to the wave equation

2 2
E;‘f = —wg(x)w-l-czﬂ
t

ox?
with the initial conditions:

W o=
3 (x,t=0)=0

—(x~xg)¥Aax?

w(x,0) = o cos ko(x — xp) e

penodic boundary conditions

W(Oat) = W(xmnx’ t) .

and where

®?(x) is a random variable on the interval [1—dn, 1 + dn].
In most of the simulations shown dn = .01, corresponding to a 1% density variation. The simula-
tions are done on a spatial grid of 2048 or 4096 grid points. The fluctuations in wj are constant on

steps typically of 4 or 8 grid points. A typical plot of the value of w/f(x) is shown in Figure B.1.
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We plot the following quantities at various times.

Psi: w(x,t)=amplitude. Since this is a linear problem, the units of this quantity are arbitrary.
1 2
2

2
(4

2

ow(x,t)

1 e} 2
Energy: E(x,t)= 3 o, (x)y(x,t)+ P

ox

dy(x,1) } :

This is the numerical value of the Hamiltonian density which generates the wave

equation. This should be a slowly varying quantity, and therefore a better indica-

oy

tor of localization than y or Y

individually, which oscillates in time as o,.

The following symbols are used in describing each simulation. The quantities are discussed in
section 4.2 and values of W/E and E are used to enter Figure 4.1 to determine the predicted locali-

zation length &.

ko= central wave number of the initial Gaussian wave packet
c= velocity in the dispersion relation w*= a),? + 2k, wﬁ =
n.= number of grid points in a density fluctuation step
I.= length of density fluctuation step (correlation length)

= kg' 152

WIE= Swjlkic?
= Liapunov exponent from plot 4.1
= 1./y=predicted localization length from the theory of Escande and Souillard (1984)

dn: the plasma frequency w,? is a random variable on the interval {1 — dn, 1 + dn}
2

V= ’Z: (group velocity)
P

Vet = total distance propagated at the group velocity at the end of the run.

In interpreting these simulations the following general remarks pertain.

1) If y~e ™' then energy ~ e72* '*'. Therefore, the localization length will be the 4 width
of the wave packet at the amplitude £ =E_,, ™.

2) Although it might be expected that results would only be valid after a time ¢ such that
vt 3 &; in fact we find very good agreement with theory when v, >&.

3) An important qualitative difference between a freely propagating and a localized wave can

be seen in the energy. For a propagating wave, ¥ ~ c0s (kx — w,t), and so, for small 2,

® A .
~ — [cos® (kx — w,t) +sin® (kx — w,¢)] ~ constant. For a standing wave, on the other
2 (4 P g
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hand,  ~ cos kx cos ot and so for small ¢?, E ~ w7 cos? kx(cos® wt +sin® wt) ~ cos” kx. For
a propagating wave the energy density will have a smooth envelope, while for a standing

wave it will be modulated with wave number k.

Free Propagation

Figures 5.1 and 5.2 show freely propagating waves (constant density). These are to be com-

pared with the other simulations in this section which are all with randomly fluctuating densities.

These two runs show the free propagation at the group velocity of two initial Gaussian wave

packets. The initial excitation of the form

—xlx=x

vx)=ype Y cos ko (x — x); W(x)=0

is seen to split in two and propagate in opposite directions. The dispersion relation is

o'= o) +c*k* with wj=
in both cases v,t is very close to the distance which the peak of the envelope propagates. The

parameters in these simulations are the following.

Figures 5.1.1—5.1.5 Figures 5.2.1—-5.2.5

ko=.16 ko=1.7

c=.2 c=.05
v, =.0064 v,=.0043
vt =512 Vvt =344
n, =4096 n,=4096
dr=.2 dt=.2

5.1. Localization Length Studies

The following series of simulations shows the effect of time-stationary random density fluctua-
tions for a wide set of parameters. The observed localization lengths are consistent with the values

from Figure 4.1.



Figures 5.3.1—5.3.6

Parameters:
ko=.16
c=.2
dn=.01
n.=16

1.=122

E=.04
W/E =9.8

v, =.0064
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This set shows the time development for the same Gaussian
wave packet as for the freely propagating case shown in plots 5.2.1—
5.2.5. Inm this case, however, the density fluctuations are strong and
localization is quite evident. In plot 5.3.2 we see the high wave
number small amplitude signal propagating at the velocity ¢. This is
the Sommerfeld precursor (Jackson, p. 9, p.313 ff.). With W/E =9.8

this is far removed from the plotted region. We might estimate y~ .1

and therefore § ~ 12, which is of the same order as the observed localization length. In this case,

however, we do not expect kol. to be a meaningful quantity since the wave is so strongly distorted.

Figures 5.4.1—5.44

Parameters:
ko=.32
c=.2
dn=.01
n.=16
1.=2.54
E=.66
WI/E =2.44
vg=.0128
vt =307
y=8x10"2
£=31

Figures 5§.5.1—-5.5.6

Parameters:
ko=.85
c=.15
dn=.01
n.=3
1.=.46
E=.154
WI/E = .61
y=3x10"3
E=153
vg=.019

Vet =570

We have run this for 120,000 time steps to ¢ = 24,000. Despite
the very strong localization, there is still very good agreement
between the predicted and the observed localization lengths. v is
estimated since W/E =244 is not on the graph of Liapunov
exponents Note that localization is very strong even though

vt/ =10.
?

We show the time development of this in some detail. This
shows a case where the final localized wave packet is ~40
wavelengths long. The initial wave packet is confined to a region
much smaller than the final localized wave. The wave packet splits
and begins to propagate, as seen at 1 =2,000, however, there is evi-

dently already significant reflection and a significant amount of wave
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energy remains in the initial region. By ¢ =12,000, the outward pro-
pagating portion has been significantly depleted and by time
t = 18,000 there seems to be little propagation. It is evident in the energy plot§ at ¢+ =20,000 and
¢t =22,000 that the observed localization length is ~150, consistent with predictions at ¢ = 28,000.

It is more confused since propagated energy does wrap around due to the periodic boundary condi-

tions.

The initial and ‘“‘final’’ conditions are exhibited for the following sets of parameters.

Figures 5.6.1—-5.6.3

Figures 5.7.1—5.7.3

Parameters: Parameters:
ky=1.28 ko=1.7
c=.07 c=.05
dn= 01 dn=.01
n.=8 n.=8
1.=.306 1.=.306
E=.15 E=27
WI/E=1.24 W/E =1.37
v, =.0062 v, =.004
vt =50 vt =34
y=8x1073 y=1.5x1072
£=38 E=20

Figures 5.8.1—5.8.3

Figures §.9.1—5.9.3

Parameters: Parameters:
ko=1.28 ko=1.7
c=.1 c=.05

dn=.01 dn=.01
n.=8 n.=8
1.=1.23 =3
v,=.013 v, =.004

vt =230 vt =34
E =247 E=.27

WI/E =.61 W/E =1.38

y=12x 10" y=2x1072
E=100 £=15.3
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5.2. Effect of Time Varying Density Fluctuations on Localization

In a real plasma the density turbulence is not time stationary, and therefore the effect of
motion of the density fluctuations on localization must be studied. As discussed in section 4.3 we

expect that the parameter

s 13
2
vxx

2 g2
e §

3

(=7}

will be important in studying the effect of the mobility of density fluctuations.

One would expect that for o1 waves will remain localized, but might spread at a rate
corresponding to the velocity spread of the density fluctuations. As o decreases to og ~ 1 one
might expect to reach a point at which the wave is no longer localized and therefore the wave
packet will spread diffusively. In fact, in ‘lhe numerical work presented, for strongly localized

waves, this does not seem to be the case.

Density fluctuations moving uniformly with a velocity v<v,, the group velgcily of the waves,
are stationary in a co-moving frame and should not affect localization. This has been verified

numerically, but is not presented here.

A second possibility for one-dimensional turbulence is that density fluctuations have a con-
stant speed and may be directed cither to the left or to the right. To investigate the effect of this
we form two random independent distributions &ny(x) and &n,(x) on the interval [ .5-dn/2,

5+ dn/2] and form the time dependent distribution

dn(x,t)=8n (x—c)+dn,(x+c,t).
The results of these simulations are shown in Figures 5.10.1—5.10.6 and 5.11.1—5.11.6. In these
cases one has to remember that the sum of two uniform distributions is not a unitorm distribution,

and so the results of previous localization length predictions do not apply directly.

For these we use parameters as before except that:

Py

2

P’y
or*

.
=-w, + 3¢,
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3k ¢
SO v, = .

Figures 5.10.1—5.10.6

Parameters:
dn,=dn,=.004 In this case we see that the initial wave packet splits and
k°=.64
L= separates at the velocity ¢, and seems to be localized by the co-
v, =.003
vet =42 moving density fluctuations. Spreading appears to occur due to
E=1.6
WIE=2.0 scattering by the oppositely directed wave packet.
y~.1
E=10
O = 1.2
c=.04
c,=.004
Figures 5.11.1—-5.11.6
Parameters: . . R
= 496 In this set we show the resulting distribution of £ in the cases of
Q= S
c=.2 oppositely moving density profiles with:
dn=.05
n.=35
1.=107 Figure 5.11.1-5.11.2
A .
v.=.05 ¢, = 0 (stationary profiles)
£ _
vt =1635 % =
E=18.5 Figure 5.11.3—5.11.4
WI/IE=16 ¢s = .005¢ (¢/v, = 1/50)
y= Ol = 8.7
E=50 Figure 5.11.5—-5.11.6
(from Fig. 5.11.2) ¢y = Olc (c/v, = 1/25)

Qg = 54
In these cases the wave packet spreads at the speed ¢,. Most of the wave energy seems to
remain confined within a space determined by xo* (£ + 1), although we do see indication of some

additional spread of wave energy, especially in Figure 5.11.6 in the regions x < 185 and x>415.

'

In the following simulations we assume density fluctuations with widths /., amplitudes, random

on the interval [~dn,dn], and velocities random on the interval [-¢, ¢,]. In other words, each

density fluctuation has an independent random velocity.
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Figures 5.12a.1—5.12¢.1

Parameters:
ky=.426 Figure 5.12a.1—5.12a.2
c=.2 ¢, = 0 (stationary density fluctuations)
dn=.02 Figure 5.12b.1—5.12b.2
n.=14 ¢, = Olc (¢fv, = 1/25)
1.=4.29 og = 4.14
vy =05 Figure 5.12¢.1—5.12¢.2
vyt =480 c. = Olc (cv, = 12.5)
E=33 o = 9
W/E =92
r=.06
&=75

In this case again the spreading of the wave packet seems limited by c¢,¢.

Figures 5.13a.1—5.13¢.3

Parameters: )
T ssa Figure 5.13a.1—5.13a.6
0— .
c=.12 . . _
dn= 028 In this sequence we show the time development for stationary
';‘ig 45 density fluctuations.
o = 037 Figure 5.13b.1—5.13b.3
v tgz 1180 As above, but ¢, =.0025¢ (¢ /v, = 1/3333)
gE =4.7 aG = 6.8
W/E = .89 Figure 5.13¢.1—5.13¢c.3
y=.03 As above, but ¢, = 0lc¢ (¢/v, = 1/31)
E=85 o =2.7 Note that the vertical scale is different in 5.13c.1 and that

the localization region is the same as the others.
Figure 5.13d.1—5.13d.3. As above, but ¢, = .05¢ (cofvg= 1/16) oz = 93

Figure 5.13e.1--5.13e.3. As above, but ¢,=.1c (c/v,=1/3) ag=.58

Again, in this sequence the spreading of the wave packet seems to be limited by c,r, despite
small values of og. In order to decrease o further, it would be necessary to increase ¢, ~v,. At

this point localization ceases to have any meaning.

Conclusions

We have found excellent agreement between the localization length predictions of Escande
and Souillard and the confinement of waves observed in numerical simulations. The interpretation

of
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ko = N(w? - B2)/c?

as the central wave number of the confined wave packet is borne out, and does lead to, the correct

localization length predictions.

Strong localization seems to depend weakly on global properties of the medium and strongly
upon local propertits. By this it is meant that the structures and spectrum of a localized packet is
largely determined by the properties of the medium where most of the wave energy is confined, and
the effect of the medium far from this seems only to insure that what litde wave energy does reach
distant points is scattered back. It is this property which seems responsible for the fact that a local-
ized packet, in the presence of mobile density fluctuations, spreads at the speed ¢, characteristic of

the speed of the density fluctuations rather than at, for example, v,.

We see for example, in the early simulations and in 5.13a.2, that initial spreading occurs at
the group velocity, despite the existence of density fluctuations up to the point where the wave is

confined.

It must be kept in mind that the results shown here for mobile density fluctuations are not
necessarily valid for higher dimensions, and in particular it might be expected that waves near the
mobility edge in three-dimensions are delocalized by time dependent density fluctuations. On the
other hand, the apparent lack of dependence of localization in one dimension on the motion of den-
sity fluctuations provides hope that things will not be radically different, and the argument is
further supported by the weak dependence of localization length on dimensionality for strong local-

ization as discussed in section 4.
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6. Beam-Plasma Processes in Random Media

In section 6.1 we develop a theory for the weak-beam plasma instability in random media. In
section 6.2 the results of numerical simulations of this instability are presented. In section 6.3 we

develop a theory for the saturation of the instability.

6.1. Theory of Beam-Plasma Processes in a Turbulent Plasma

If waves are localized in a turbulent plasma as theory and our simulations suggest, then a

beam-plasma instability could be expected to excite localized waves with a central wave number

,
ko= —= resonant with the beam particles.
Vp

In order to understand how this interaction comes about, we return to the Lagrangian discus-

sion of section 3. We shall concern ourselves with the portion of the Lagrangian

2
L=3 e0(x)+ 2 [p.-i.-—f—,'n—e,v(x,)} - giﬂjlvwfd’x
ing iy <

We make the assumption that we can represent the fields in this expression as a sum over

localized waves whose representation is an exponentially localized wave packet, i.e.,

O (x,1) =Y, Omlx,t)

where

-l X =yl

Om(X,1)= 0, COS W, t COS k(X = X,,) & .

where x,, = 1/&,,.

As seen from the simulation in the previous section, this is only an approximate representa-
tion; however, it will allow us to make some theoretical predictions, and it should be reasonable for

waves where the localization length is much greater than the central wave length.

We can rewrite this as

~

Ou(x,t)= AL J'dk Sa(k) [cos [k(x—x,)—o,t1+cos[k(x~x,)+ o, ]]
2
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where

Km
Splk)y= ————
(k = k)2 +x2

From this we readily obtain the generator for the Lie transform

w= —z e; jdt o (x;,t)

- e e
=—Ze,%”—:—jdks,,,(k)[sm[ (X; = Xp) = Ot ]

kv, - o,

sin [k (x; — x,,) + @, ]
* kV,‘ + w,,

If kW= Z e; ¢(x;) where the sum is over all beams and plasma particles, then

K“——{ K“’)——— > (2"'4;” [dk” dk** S, (k) S, (k")
jﬂln
sin [&’ (x; = X,,) = @) . sin [k’ (x; = x,) + @]
k'v,~ o, kv + o, ’

cos{k” (x; = x,)— wut]+cos[k’ (x; —xp)+ w,,t]}

Evaluating the Lie bracket and taking a time average over the rapid phases w, ¢, w,?

=2’; 8m = j'dk dk’’ S, (k") Sk’ Yk’ k**

sink’(x; = x,)sink”’(x; = x,,)  sink’(x; = xp)sink’”’(x; = x,,)
+

x ’ 2 ’ 2
(k v + wm)_ . (k Vi— wm)

Next we assume that, in this representation, we may replace the sum over particles by a spa-

tially uniform average. Using the Vlasov representation:

Y=Y [drdPv i x-x) 8 (v-v)= [dPxdPvnge(v).
i i
The assumption that we make here is that once we have taken into account the effect of den-
sity fluctuations on the wave propagation which is to localize the waves in the problem, we can use
average medium properties (such as averages of the dielectric function) to account for wave-wave

and medium-wave coupling effects. The simulation results that will be presented in section 6.2



bear out this assumption.

This gives

— 1 l¢pnt? nge?
RB®=23 = —— a0

S(k'+k")-8 (k' -

kll)

X J‘d3kld3knk;knsm(ki)sm(kn) >

1 1
+
k'v+ o, (k'v-,)*

Lo 18 e
=—2—§ [k’ S2k") k

2r

no

&> 1
jdv g(v)
m

el + i
k'v+w,) (kK'v-w,)

X

Likewise we can write

1
8

Lﬁ,,d_,=§l;jd3xw¢|2= 362 [k k22 (k)

We can then write our Lagrangian as

LO=K® 4 Lo,

N~ kR o no ¢? g(v) g(v)
=Idk§’¢m§5,,,(k) o {J’d% +

¢k
"; 81

[-% (E (kmi wm) +€ (_kmv wm)]

kv + o)? (k'v - w,)

1

4rn

}__
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where £(k, @) is the usual plasma dielectric function for a plasma with uniform density n, and

velocity distribution g(v).
But then the action is

S®=[dr LO(g,; 6,].

Varying the action with respect to ¢,,, and setting it to zero:

(2)
0=235",
56,

gives
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(e (kp, @)+ & (—kpp, @)] =0

We note that with the beam present,

€(kpy, W) # E (—Kkp, @) .

Following the standard analysis this will give a growing wave mode provided

9g

98
oy +

v=& aV
k,

>0.
. X
k,

For all the cases we are interested in the beam velocity v, ~10 v,,. The damping from the

Maxwellian is negligible. Therefore, ¢, should grow at a rate % the standard Landau growth rate.

We therefore expect that in a turbulent plasma those localized modes which are resonant with
the positive slope portion of the beam will grow with the same growth rate as a plane wave with
the same central wave number in the homogeneous case. A major difference between the two will
be that the localized waves will remove much less energy from the beam for any given maximum

wave amplitude.

For the sake of completeness, we can also look at single particle motion. If we have the new

by et
X,

single particle Hamiltonian K@, then the guiding center motion of particles is P,=-

E‘_('Z):_;_{”,,ki(l)}:

e? 1,12

m;, (2ry

l ’ rer ’ 2 ’ r’
—5; jdk dk’’ S,(k") S (k') k" k
1 1
>+ ] .
(k'v,+ @)y  (k'v, - w)”

sin k ! (x" - x,,,) sin k” (kl - x,,,)

This can be evaluated noting that:

J'd/c" k' Sk’ ysink” y=~n ai [cos kpy e ™"
¥

and near resonance for v;,

fak” k" $,(k") - sink’y

Wy, — km vi)



[e0)-6(-»]

where

I if y>0
O =10 if y<o

Far from resonance when

@, — 'an"I

> K,

2

— e; ~2x, Lx = xy 1 1
K= k2ole T, + .
! 16 m, z,," m e

(kn v, = wn)z (Ln v+ wn):

This is just the usual ponderomotive potential (Schmidt, 1979, p. 51).

Near a resonance,

w,,—lk,,v,»l’grc,,

2.2

= € - lx—x

K®= 1 &t = | === cos k, (k —x,) e * T
2 m (2n)? dy

lo 9 S, (‘EJ cos % (x—x,) [G)(x - x,) - O(x, - .\')]
17 a [ CD) ‘ i

i

2 )
Ik + 1

-Xplx=x,] 2 kn 0 [wn] 1
e o), — ———
8m; ‘,‘_2 Xn 3 ( D ) Vi ((D,./ v, — /Cn)
w"
sin [( — =k (x- x,,)} [@(.\' -X,)-O(x,—x )] ]
Vi

w, |
2,2 .2 A
e k; oy R EEs) LY

w’l
cos — =k, (.\' - x,,)
8m;vi x, (w,,/v,» -k, 2+ l) i

X [O(x ~ x,) - O(x, — x)]

n

1

Kn

We note the following points. Everything outside of the braces is dimensionless. K ~
and therefore is strongly dependent on the localization length. It also changes sign with w, — &, v,

Le., as the particle is faster, or slower than the resonmant velocity. We will return to this subject

when we discuss saturation mechanisms for the beam-turbulent plasma instability in section 6.3.
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6.2. Simulation of Beam-Plasma Processes

In this section we show the results of a series of simulations of beam-plasma instabilities.
The method of simulation and the program are described fully in Appendix A, but briefly is as fol-
lows:

The beam is simulated by particles which obey the equations of motion:

d’x, e
dr?
Poeam (¥,0)= 2, 8 (x = x(1)

E(x)

For the background, define
yix,t)=—e (ne(x,t) - n(x, I))
with equation of motion

IV _ wZ(x) yw +3v] Gl

or? ax?

where o’(x)=4nn, (x,t) €*/m, is a random variable.

For the fields: V -E =4np, where p = —enp . (x,1)+ w(x,¢).

We plot £ and y as before, except that y now represents the background charge density per-
turbations due to plasma oscillations. The plot parameters are as in section 5 with the following
additions and exceptions.

v,, = effective electron thermal velocity of background plasma

ny/n,= beam density/effective background plasma density

v, = beam drift velocity

v,, = beam thermal velocity

ko= beam resonant wave number

3k0 \',2
V= L = group velocity of beam resonant waves in the background plasma
Dp
kOL v’z R . .
# of states = vl bl B which represents the expected number of localized states which
2T Vp

should be excited by the beam. (See the discussion in section 4.2 on density of states.)
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The initial conditions for all of these simulations are y(x)=0, y(x)=0, and beam particles
uniformly distributed in space with average velocity v, and a Maxwellian distribution with thermal

velocity va.

Figures 6.1.1—-6.1.3

Parameters: . ) .
——V—T This set shows a system without density fluctuations and should
"n= -
vp=1.5 be compared with 6.3.1—6.3.6 which has 1% density fluctuations.
v,=.15
n,,/n,,,=9><10'6 The noteworthy points in this are the smooth variations in the
k0=.67 . .
v.= 01 envelope of v, and the purity of the harmonic content. The envelope
g—'
dn=0

modulation can be understood as the beating of a narrow spectrum of

waves excited by a beam of finite temperature. If we take £Ak =2m, where & is the charactenistic

length of the modulation and Ak =A (w/v) =w, v,z/vg = 066. Therefore £ =94, consistent with the

characteristic length of the modulation of y. The other noteworthy point is that the energy density
plot is characteristic of a traveling wave. Furthermore, comparing the .positions of the peaks at
t =3,000 and r =4,800, it is apparent that they have moved a distance v, At = 18 between these two

times, as one would predict.

Figures 6.2.1—6.2.15

Parameters:
v, =.035
vy=1.0 6.2.2 shows the initial beam-particle phase space (velocity vs. posi-
v,=-1

6.2.1 shows the distribution of density fluctuations.

tion).
n,,/np,=9><10'6
dn=.01 6.2.3 shows the initial beam distribution function.
n.=4
ko= 1.0
1.=.61 At t=0, y=0, and Figures 6.2.4—6.2.15 show the subseguent
E =38
WI/E =277
v=.06
£=8.7 At 1t =200, y is approximately unitorm in space, and the energy

time development of the beam-plasma instability.

ve=.0036 shows that the wave is a traveling wave. By ¢ = 1200 the localized
vt =20

# states=3 structure is beginning to show. Between times ¢=4,000 and




Figures 6.3.1—6.3.6

Parameters:
v, =.07
v,=1.5
v,=.15

n,,/n},,=9><10‘6
dn=.01
ky=.67
n.=8
1.=2.34
E=246

WIE=1.5
y=6x1072
£=27
v, =.01

ver =58
# states=13

Figure 6.4.1—6.4.6
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¢t = 5,000, the mode structure is reasonably stable and the growth has

saturated.

Simulation shows the same initial conditions as in 6.1.1—6.1.3

except that 1% density fluctuations were introduced. The energy den-

sity plots are consistent with standing waves.

Figure 6.5.1—6.5.2

Figure 6.6.1—6.6.2

Figure 6.7.1—6.7.2
Parameters: Parameters: Parameters: Parameters:
Vo =1 v, =.04 v, =.05 v, =.15
vy =1.26 vy =.7 vp=.7 v,=1.5
v,1=.12 v,2=.1 v,2=,08 vh:'l
ny/ny = 91078 dn=0l dn= 01 dn=01
dn=02 ny/ iy =9%107° nyln,=9x 1078 ny/n,=9x 10~
ko=.79 kp=1.43 ko=1.43 ko=.66
n.=4 n.=4 n.=4 n.=4
I.=1.17 [.=.6 l.=.61 I.=.61
E=854 E=T] E=T77 E=.16
WI/E =1.06 W/E=1.0 W/E=19 W/E=23
y=2x10"2 y=2x10" y=5x%1072 y=6x1072
E=59 §=30 =122 E=10
v =024 # states=10 # states=§ # states=2
vt =142 vy =.006 v,=.0036 . =.0067
# of modes=15 Vet =26 vt =13.6 vt =132

Growth rates and levels at saturation

The peak energy density (E) versus time is plotied in Figure 6.11 for the simulation presented

in Figures 6.2.1-6.2.15, giving an observed growth rate between (=200 and (=1200 as

Y/@,=.0015. The growth rate between ¢=1200 and ¢ =3500 is y/w,=.00024. (Note that the
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growth rate for E is 2y.) The standard expression for the Landau growth rate of a weak beam is

[B]

y _ 9% 1 9fs

ny a\‘"

o

(3

4 wp vy = wlk

(Chen, 1976), and gives for the fastest growing wave resonant with a Maxwellian beam:

2 2
[ V
Yoox _ 35 2 A _ 00034
w, 2 2
4 (Dp Vin,

for the fastest growing wave for the parameters of this simulation. We had predicted that the
observed growth rate for a localized wave should be y/2=.00017. We note that the observed
growth rate between ¢ = 1200 and ¢ =3500 lies between y/2 and . That. the observed growth is
larger than /2 is to be expected since the growth time 1/y~ &/v, and so the resonant wave is only
partially reflected during the growth time. The very large growth rate for ¢ <1200 is a result of
discrete particle effects early on and the ‘‘quiet start” beam initialization (Birdsall and Langdon,
1985). Resolving these difficulties would require many more particles and a much slower growth

rate, straining available computer time.
We can scale the levels of saturation in our simulation to values for the type III solar radio
burst in mks units as follows. Let primed units refer to type III parameters in mks units and

unprimed quantities to simulation values. Then from the equation of motion ¥ =(g/m)E the scal-

ing is

E (mg) ¥ {L]
E

We use /1" ~ w,:/wp, m’/q" =electron charge/mass ratio in mks units and

’

v’ _ Type Il beam velocity (mks)
v Simulation beam velocity

Since E =4np/k = w/k; k =1; and at saturation (Figure 6.2.12) v =2 x 107%, the saturation field is

E'=3 mV/m

which should be compared with the | mV/m observed field for the March 11 event. This scaling, it

should be noted, is only valid for the case that n,/n,, vy/vy ., and v,/v,, are the same for both
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plasmas. This is not exactly the case, and furthermore, as discussed in the summary to this section,

the distribution function for the solar wind is not a Maxwellian.

6.3. Saturation of the Beam-Plasma Instability

A fundamental problem in understanding the type III solar burst is the mechanism for satura-
tion of the beam-plasma instability, limiting growth to the observed levels, despite the persistence
of the observed positive slope at a distance of 1 AU. An extensive study of this problem was done
using quasi-linear theory (Magelssen, 1976; Magelssen and Smith, 1977). These authors concluded
that an important effect in the persistence of the beam is that at a given point in space, the beam
velocity decreases with time. Slower beam electrons later in time> reabsorb plasma waves which
were resonant with the faster electrons that produced them earlier in time. At 1 AU the ISEE-3
data do not support the quasi-linear relaxation hypothesis, since a strong positive slope is observed

on the electron distribution function.

Papadopolous (1974) has proposed that the oscillating two-stream instability is responsible
for removi‘ng resonant Langmuir waves, thereby limiting thc;a growth rate of the beam-plasma insta-
bility. Observed wave levels at 1 AU are below the threshold for this process, however (Lin et al.,
1986). As discussed in section 4.1, Muschietti (1985) examined the effect of Langmuir waves
being scattered out of resonance with the beam electrons by solar wind density fluctuations and
concluded that the process was ‘‘too efficient.”” They found that unless special assumptions are
made about the anisotropy of the density fluctuations the beam plasma instability will be

suppressed.

In the Whelan and Stenzel experiment (1984), the beam was observed to travel the length of
the experiment with no evidence of quasi-linear relaxation, although Langmuir waves from the
beam-plasma instability were observed only in the first few centimeters of the experiment. They
concluded that particle trapping was responsible for saturating the instability. In their simulation of
this problem, Pritchett and Dawson also concluded that trapping was responsible for saturation of

the instability. In both cases, however, the beam was relatively cold.
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Davidson (1972, p. 55 ff.) gives the characteristic trapping time for a particle resonant with a

Langmuir wave with electric field E and wave vector k as

1, = w5 =(m,/ekE)"? .

for the 11 March event this gives

7, = .0016 sec. 6.3.1)

On the other hand, the transit time through a localized wave packet of 70 km extent using v, from
the 11 March event is ¢ =&/v, = .002 sec. It should be kept in mind that in 6.3.1 we have used the
peak field. Not only is the average wrapping time much larger due to the lower average field, but
the bounce frequency changes radically on transit through the localized structure. Therefore, parti-
cle trapping does not occur, and we propose another saturation mechanism in what follows.

We show the distribution functions at saturation for two cases. The runs are similar to those
of runs 6.1 through 6.7, however, we have used a short simulation volume (L =150 vs. L = 1200)
in order to increase the phase space density of simulation particles. This results in much smoother

distribution function.

Figures 6.8.1—6.8.3 Figures 6.9.1—6.9.3
Parameters: Parameters:
v, =.15 v, =.13
Vv, =2.2 v,=1.8
v, =.15 v, =.15
ny/n,=9%107° ny/n,=9x107°
dn=.02 dn=.03
n.=12 n.=12
v=.06 y=.09
£=30 £§=20
ko=.45 ko=.55
1.=18 1.=138
E=.65 E=10
W/E=1.5 W/IE=18

The important result is that in both cases the distribution function is tlattened in the vicinity of
the wave-resonant velocity. There appears to be no overall heating or diffusion of the beam, a

characteristic shared with every simulation that we have done.



The crucial difference between our condition and quasi-linear diffusion is that here the parti-
cles see only one wave at a time. Furthermore, the localized wave, although having a width in &
space is not well approximated by the random phase approximation, since, in fact, it is a coherent
structure, the phases are well determined, and first order changes to the particle velocity are enough

to maintain a certain phase relationship between the wave and a particle.

Velocity space diffusion of particles by localized wave packets
In order to investigate the effect of a localized wave packet on the distribution function, a sim-
ple program was run. We followed the orbits of an initial particle distribution governed by the

equation of motion

d’x -
e =Eq, cost cosx e~ '*!
.2

where K is a vaniable parameter. E, was chosen so that the trapping velocity

2e E
v, = = 2E,=1,

mk

meaning that a particle of velocity vox.1 would be trapped by the wave if k =0. The results were

as follows:

Figure 6.10.2 the initial distribution function for the numerical experiment was:

constant 8<v<l|
fy = {0 otherwise
Figure 6.10.2 distribution function after passing through the wave packet tor x = .1,
Figure 6.10.3 as above but x = .2
Figure 6.10.4 as above but k = 4
It is clear that the particles have diffused in velocity space around the resonant velocity
ves = 1.0. The diffusion is significant in the neighborhood of velocity v = 1.0 with width approxi-

mately =+ x. In the case (not shown) where
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constant 8<vy<1.2
fv) = 0 otherwise ’

no distortion of the distribution after passage through the wave was noted.

In order to explain this we begin with the Vlasov equation:

4 _of
0="-=3L+(fH). (6.3.2)

We expand f and H by order in the field:
f =f(°)+f(l)+f(2)

2
H=HO+HO=F | Loypo(x)
m4

i ="

Then 6.3.2 becomes

TAR
ot

fO=(w, f9) and

=~{f®, 1M} or,

Y —
o = )
where the bar indicates time-averaging.

Using our previous expression for w,

i

edo dk X sin (kx; + ot)  sin (kx; + wt)
=—— +
(k—ko)z+K2 kV,“f(D kv,'-w

we find

Q—af:E = __{f(l), /,(1)}

= ~{{w, fO), k)

e

K2k
(ko= k') + k2] [(ko— k") + K]

—e2 92
=~ [dk" ak”
2n-

N cos(k”'x+wt)  cos(k”x—wt) o
K'v+ o kv - dp

, COS k' x cos ot )

—e2 2 200007 i 17 e a
e*o fdk'd"' xk'k” sink’xcos k”'x a_a_[{ 1 +—,',,l ] fo
4 (O N e S I A U
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Keeping resonant terms and ignoring ponderomotive effects, this can be evaluated as

: : ol -xlxl
2 xvsinkgxsin [—x| e
o __[eko) 5 v o
ot m ov (o - Ic(,v)2 + xzvz av

This is the standard form for a diffusion equation. Although we might try to integrate this
numerically, it is instructive to examine this expression and make some estimates of the diffusion

rate. We note first that D (v) will be significantly different from zero only in a region

and

1
<xX<—.
K

x|

agreement with the computational results of plots 6.12.1—6.12.4.

We attempt to estimate the maximum electric field to which a wave can grow by assuming the

growth stops when the distribution is flattened in the region resonant with the wave. To flatten the

original slope of the beam distribution function f we require that A¢ %]ti ~(v=v,) g—f
v

Noting that the transit time At ~ —’:7, taking

of o 1

)
ov vy "

and assuming

> L
>

&

. . w
<sin kgx sin | —x

where the average is over the trajectory of a nearly resonant particle. We obtain

v At

V=V, ekyo ? 2(v—v) ki +2K3y
m

[(w— lq,v)2 +k2yv?)?

from this we estimate

E=|m,— v | k. (6.3.3)



As an example we use the 11 March 1979 parameters. For v=.lc, x=17x10'm (20
wavelengths/localization length), and k=2 x 107>/cm which are values typical of a type III burst,
we obtain E_,,=.5 mV/m. This number should not be taken too seriously, but is close to the

observed ~ 1 mV/m of the 11 March 79 event.
Likewise for our simulations (Figures 6.2.1-6.2.15), equation 6.3.3 with kE =y gives us

yv= LAERS Using the simulation parameters m/e=1, x =1/§ = 1/8.7, v =1, we predict at satura-
e

tion w = 1.3 x 10~*, which is within a factor of 2 of the values in Figure 6.2.12.

This theory for resonant diffusion is similar to quasi-linear theory (Davidson, 1972, p. 151,
ff.), except that we do not make the assumption <¢ ¢,>= | 9,128, as is usual in weak tur-
bulence theory, but keep the Fourier representation of the waves in the system and integrate over

that.

Summary
The consequences of wave localization in one dimension as presented in this section are con-
sistent with satellite observations of the weak-beam plasma instability in the solar wind. Two con-
siderations have been ignored in this section:
i)  The solar wind is three-dimensional. This is discussed further in the conclusions (section
8).
ii) The solar wind plasma has a non-thermal tail (see figure 2.3). Among other things this
reduces the positive slope of the distribution function reducing the growth rate. The
growth time l/y, in our simulation are < the localization times, while growth times in the

solar wind plasma are ~1 sec.

For the 11 March event v, =2.4 x 107 cm/sec. If & ~ 70 km, the localization time ~7 =3 sec.

So yr=.3. If anything, this should mean that localization is even more evident in the solar wind

plasma.
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Simulating the non-thermal tail on the background distribution function is a very difficult prob-
lem because of limitations on the number of simulation particles (see Appendix A). The expen-
ment done by Whelan and Stenzel (1985) suggests that this non-thermal tail may result from a
strong turbulence mechanism, which would have significant implications for the mechanisms dis-
cussed here. These mechanisms may be important far upstream in or near the solar corona, but as

discussed in section 2, are inconsistent with satellite observations at 1 AU.
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7. Three-Wave Processes

Although this section is last in the thesis, the considerations in it were the motivation for
studying everything so far presented. In section 7.1 we will review the theory of 3-wave processes
in homogeneous media, and then in section 7.2 discuss the convective problem as it applies to the
type III problem. We conclude that wave convection in homogeneous media inhibits the
L 5 T+S§ decay process. We review previous work on 3-wave processes in inhomogeneous

media. In section 7.3. we develop theory for 3-wave processes when wave localization occurs.

7.1. Three-Wave Decay Processes

In the absence of density fluctuations, the second and third order terms in the action can be

written as

SO +s®=—[ar {K(2>+ L fa’x ( |E12- 1B 12) ) =t k&
8
where the first integral on the right is of second order in the fields and the second is of third order.

Starting from the expansion (3.4)

K®= % L*HO+ % LXHD+LH®
and using
LHO® =_gM
we obtain:
\ 2
K(3)=§L2H“)+LH('). (7.1.1)

It we can use the cikonal approximation to express the potentials

o= ¢4 e (complex conjugate)
k

and
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then, as Kaufman has shown

- .e .
SM=-Y [dPxdre, (konx,0) D] (x,1)+ Y [d*xdt & D (k,w,x1) ,(k,x)
a b

<>
where ¢ is the dielectric function for electrostatic waves, D is the electromagnetic dispersion ten-

sor, and £, is the polarization vector of the electromagnetic wave, b.
We have made this separation because we shall be concerned with electrostatic and transverse
electromagnetic waves. As Kaufman has shown, one can use this to find the variable canonically

conjugate to 6,(x,t), the phase of the wave in the eikonal approximation localizing k,=V8, and

-d6,
w, = , one finds
ot
58S _ 85 _ | 9a(x.tiks ) 2
T = SEe 300 = e [ 3w ] 4’“("")|
Likewise
.. 88 88 | 9 . . 2
Jp(x,t) = 500,/01] e, = [aw,, &y D (x,t; k,w) &, [ A, (x,8)1

These expressions will be recognized as the standard action densities with the Hamiltonian
S [dPxdt o, J,.
o

We may also use these variables to re-express the fields in S, We will then have

K® >+K<3>—2jd3m DD+ Y Bua AT, T, Ty e o+

HVA

In Appendix B, we show that

‘DL wSEL . ;
K®=i NI T, T kT sina e’ @70 4 o0
no

We define

Wy Wg .
B= sin
167 nkT (86,_/8(0)
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and obtain

K(3)=2B V‘IS JL JT Cos ¢

where

¢=6,—6r—6;

We will also define

Yo=p \/Z

The factor of 2 comes from the fact that the growth rate for the action is twice the growth rate for

the fields, as computed by Shukla er al. (1983).

Going back to the action $® +S®), and varying with respect to 8(x,t), we get

dJ, dJ,
d—t"= 5 +v,-VJ,==2B 4lJ,J,J; sin® (7.1.1)

We also get:

36, 7, J
=-—aK='—w,,+B 2

ar 9/, J,

sin®d

From 7.1.1 we can see that Z—_i =0 unless (6, + 6, + 6;) does not vanish when the bar indicates a
time average. This gives us the resonance conditions

w,—w,—w,=0 and k,—k,—k.=0 (7.1.1a)

If one wave, J,, initially has large amplitude and the other two J,, J. have very small ampli-

tude, then initially we may take J, as almost constant. Furthermore, the relative phase ® will

quickly evolve so that sin® =1, and so we use sind =1 in what follows. (For this and a discus-

sion of the general time development of such a system of equations see Meiss, 1979, and Berg-

mann, 1985.)

We define g, = 4/Js a,=4//7 and obtain

d day |
5[‘014‘\’&‘—8— =Y 4
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If waves 1 and 2 are damped, we can put in the damping heuristically to obtain the WKB equa-

tions:

[_gt_.*.!h._aa;-f-yl] a,=%Yoas (7120)
d d
[5 +£82.§;+h] a =104, (1.1.2b)

which were first obtained by Rosenbluth (1972).

In the cases where the damping is of kinetic origin (ion Landau damping for example), this
would have come out of the solution of £ (k, w)=0. In the case of the transverse waves, however,
where the damping is dominated by collisional effects, it is not deriveable from an action principle.

A brief word about the damping rates of the ion-acoustic and electromagnetic waves is in

order. For the transverse waves we use the Dawson-Oberman impedance

Ty 2InA-1
< = —=—="— where A=4nnA}
NI87 A b

wpe
(Dawson, 1968).. This may actually be as much as a factor of 2 larger due to enhancement from
ion density perturbations in the solar wind.

Iy

wpe

~2.5x 107" for the 11 March 1979 event. (7.1.3)

For the ion-acoustic wave, the damping rate as determined by Lin et al. (1986), is

yo=.lw (7.1.4)

due to Landau damping of the ion-acoustic waves. For the 11 March 79 event T,/T; ~ 5.

The damping of ion-acoustic waves leads to a dissipative ‘‘localization’’ in space. The dissi-

pation length will be

&
As
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7.2. Space-Time Evolution

K-yv—or

If we assume that a,(x,t)=3d,e® K-y-ar

, and a,(x,t)=d,e , and substitute these into
7.1.2b, then (w—-K v, +7)@ =73, and (0o — K-, +7v,)d,=7,d,, which can be combined to

yield the ‘‘disperson relation’’

(@-K-vi+o)(w-K-vn+y)-1=0. (7.2.1)
The spatial and temporal development of a 3-wave system governed by 7.2.1 have been
thoroughly studied and reviewed by A. Bers (1983) whose analysis we follow in the remainder of

this section. In order to simplify the analysis, we first transform to a frame moving with velocity

V such that v, =v, +V, va=vs +V, and ‘@’ =w-K-V, where V is chosen such that Vi, vy are
(anti-) parallel. We will take wave 1 to be the ion-acoustic daughter wave and wave 2 to be the
transverse electromagnetic daughter wave. The general vector relationship of vy and ys are shown
in 7.2.2, along with our choice for V, which will reduce the problem to one-dimension with the

vector relation shown in 7.2.3.

‘ A

\
\ 7/

R VT
Vy . 722 723
vy ) I
X

VS ;‘ \\( \/3

In the frame of reference shown in 7.2.3, one obtains the ‘‘dispersion relation’’

(@ -Kvr+y)(@ —Kvs+7) -1 =0
If vyy=v,=0, this would be an absolute instability (positive growth rate for a fixed position in
space) with the growth rate
2 vy vl
w=——"%"
I"Tl + |\-’5'

There are, however, two thresholds associated with v, #0 and y., #0:

1) 73 >7, v, for there to be an instability at all, and 7.2.4)
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a a (ry 1wl + 72 lvp])?
DY T g vl

for the instability to be absolute. (7.2.5)

If (7.2.4) is satisfied, but (7.2.5) is not, then the instability is convective, meaning that at a fixed

point, x, in space a (x,t) = 0 as t — oo, but there is a moving pulse that will grow in time.

The growth rate of a convective pulse moving with velocity u parallel to vg, and v} 723 is

given by

. 2[(vp—u) (vs +u))? 71 (U +vs) + va(vy — u)
@y = Yo— (7.2.6)
VT + VS VS + VT

For the March 11 case y,=1.8/s, as was determined by Lin et al. (1986). Using 7.1.3 and
7.1.4, 3 >ys vr so the process is unstable. On the other hand it is the case in this problem that

¥r ve < ¥ v, and so,

0 lvg! + 95 Lvp1)? vy
v v Ys vy —>Y;' T' - 4x10°

41 V¢ VTl 4VS

Therefore the condition (7.2.5) is not satisfied by 6 orders of magnitude. When y, = 0, (7.2.6)

becomes

W 20(vp =) (vs + )} Ya(vr — u)
Wy = Yo—

vr + Vs Vg +Vr

It is easy to show that the fastest growing pulse will be when

.

vr

Vr—U)=
(vr—u) "
q

which gives

<9

(3]

s

gy =

The growth length for the 11 March 79 event will be

‘Y
=t ’3’3 = 7% 10° km .

g Yo

L
'S K
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This presents a distinct problem for growth. An ideal, non-turbulent solar wind plasma

would have a density gradient (due to conservation of the solar wind flux)

2"50)
R

Answ =-
where R is the distance from the sun to the point of interest (1 AU). The eikonal equation for the

wave vector i of a wave propagating in media with inhomogeneities with a scale length much

longer than the wavelength of the wave is:

dn =i Vy+ n(n-Vv)

1.2.7
dl ¥ v ( )

where v is the group velocity of the wave (Landau and Lifshitz, vol. 6, para. 66). Since k; is

approximately parallel to the density gradient in the solar wind, vy will be transverse to it. The

dominant term in 7.2.7 is therefore 1 Vv, and we find that
1%

N wz
e = L6 X10km.

=",

C—k-

-

In one growth length the wave will be displaced a distance along the density gradient given by

d
d

VR =

x>
() !»",3

=3920 km .

-~

The resonance condition for growth is such that growth will cease when v, Ak =y, But

A 2.2
veAk=vy VkAR=dn ck AR =2
& dl @,

and so the ransverse wave will be refracted out of the resonance region within oen growth length.
The consequence of this is that because of the low level of the Langmuir pump and the high damp-
ing rate of the ion-acoustic daughter wave, the instability is convective instead of absolute, but

because of refractive effects the convective instability is suppressed.

By contrast, we apply the same considerations to the Whelan and Stenzel (1985) experiment.

Using their results we estimate

1o 3 x 10%sec?, y? = 1 x 10'¥/sec®

vy =4.5x 10° cm/sec and
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vs = 2.6 x 10° cmi/sec

b} , ¥ : : H
We see that v > v; Z—VT_’ and therefore in this case the absolute threshold is greatly exceeded.
s

If the discussion in this section has so far cast doube that a 3-wave process is involved, the
following argument gives strong support for it. If we write down eq. 7.1.1 for each wave in the
type III process, assuming no wave damping, we get

dJ
S 2B I I T sin®

dt

daJ
—‘S— = 2ﬁ M.][_ jsjr sin ®

dt
dJ
TzT = 2B A, Js Jr sin®

Adding the first two gives us

d

— (J +J5) =0 7.2.8

ar o+ Js) ( )
This is one of the Manley-Rowe relations (Sagdeev and Galeev, 1969). Again ignoring damping
and convective effects, we would expect from eq. 7.2.8 that at saturation of the 3-wave decay
J, =Js. Using the standard expression for &5 (k, w) and ¢, (k, w) gives us

2

s 1 [fz -0

when we substitute parameters for the 11 March 1979 event. Bergman (1985) did an extensive
numerical study of the time evolution 3-wave systems when one of the daughters is damped and
found that the damped daughter wave and pump wave will oscillate in amplitude 180° out of phase
with each other, between zero and ncarly equal maximum amplitude, which, however, decay with
the damping rate of the damped daughter wave. Actually, this argument ignores another effect
which is that the electron beam will replenish the Lungmuir pump wave as the latter is depleted by
the 3-wave decay.

Because all other factors seem to support the 3-wave process we next examine how density

turbulence modifies the convective process and what effect this modification would have. We begin

with a review of the considerable effort that has been made to understand the effect of spatial
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plasma inhomogeneities on parametric instabilities, much of which has been directed towards

understanding laser-induced plasma instabilities for laser fusion applications.

The usual approach to this problem begins with the following equations for the slowly evolv-

ing amplitudes

0 d x
% +v [_fol] =Ya; exp (i IoKd.r)
da, da; x
Bat- + v, [%J =Ypd; €xp (—i IOK dx)

where K = ZAE, (Rosenbluth, 1972; Nishikawa, 1968). For a linear density profile such that

K(x)~K’-(x—xq), Rosenbluth concluded that for v, v,<0, when both waves propagate along the
density gradient, the gradient leads to convective growth of the instability. DuBois et al. (1974)
showed, however, that this effect was due to the unphysical assumption of an infinite length plasma
with constant density gradient, and finite lengths lead to temporal growth for normal modes of the

system.

Klein et al. (1973) considered the case of the Raman side-scatter instability, the geometry of
which is similar to the type III problem. A laser pump propagating along the density gradient
decays into a Langmuir wave propagating approximately along the density gradient and another
electromagnetic wave propagating transverse to the density gradient. The authors did a 2-D numer-
ical simulation and discovered that this instability is not stabilized by a strong density gradient as is
the Raman backscatter instability. This was attributed to the side-scattered wave remaining in the

resonance region until refracted out, allowing for a much longer growth length.

Further theoretical progress on the Raman backscatter instability was made by Drake et al.
(1973), after Forslund et al. (1973) discovered through computer simulation that a temporally
growing mode (absolute instability) existed in the Raman backscatter problem. Drake et al.
pointed out that the beating of the pump and the backscattered wave caused a bunching of electrons
which would partially reflect the backscattered wave back into the region of the instabiliry. Tem-

poral growth became possible for waves which were quantized by the well formed between the two
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tumning points.

M. Mostrom (1975) considered this effect for the Raman side-scatter problem using WKB
techniques. The conclusion was that the reflection due to the inhomogeneities produced by the
beating of the pump and side-scattered wave could balance the effect of refraction, thereby allowing

for absolute rather than convective growth.

The first study of the effect of random inhomogeneities on parametric instabilities was done
by Tamoikin and Fainshtein (1972). The effect of random inhomogeneities considered in this study
is to causc the phases of the three waves to fluctuate randomly, and to be scattered. The major
effect is shown to be an exponential damping of the pump wave, due to scattering by the inhomo-

geneities. This depletion of the pump damps the parametric decay.

Nicholson and Kaufman (1974) studied the effect of random density fluctuations superim-
posed on a linear density profile. The suppression of a temporally growing mode, as discussed by
Rosenbluth (1972) and mentioned above, was due to phase cancellations which, as Nicholson and
Kaufman showed, is destroyed by random fluctuations. They therefore showed that a temporaily
growing mode can occur. Nicholson (1976) also studied the effect of a sinusoidal density modula-
tion on parametric decays. The effect of this density modulation was discovered to suppress

growth rates, but a large density modulation was required to provide substantial suppression.

The effect of random wave phase caused by time varying random density fluctuations was
studied by Laval et al. (1976) using the Bouret approximation, who concluded that the effect was to

suppress growth.

In summary, the major effects that have been considered are the effects of inhomogeneity in
the phase relationship between the waves. Only in the studies of Drake and Mostrom has the effect
of reflection and partial trapping by inhomogeneities been considered, yet for the cases studied the
daughter waves propagate near the critical density where even small inhomogeneities will have

major effects.

For long wavelength large amplitude density fluctuations, on the other hand, waves near criti-

cal density will be completely trapped. Although such a trapped region will be very irregular in
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shape, leading to chaotic ray trajectories, a large body of work has been done which shows that in
such cases, waves will in fact be quantized. This was studied by McDonald (1983). There is also
a large body of work in quantum chemistry studying the quantization of classically chaotic systems

(see Casati, 1983, and references therein).

The effect of wave-trapping on a parametric instability is two-fold. The first is that since
there is no wave convection, the instability will be temporally growing rather than spatially grow-
ing. The second is that the trapped wave will be quantized. The discrete spectrum for & and
will limit the possible waves in the instability and may slow or inhibit the growth due to phase
mismatches. The effect of smaller amplitude shorter scale length fluctuations is not so easily

treated in this scheme, and for this situation we return to localization effects.

7.3. Localization and Three-Wave Processes

We are nearly at the end of the story. The effect of wave localization on the 3-wave process
is to prevent wave convection out of the region of interaction non-d%ssipuﬁvely. Localization of the
Langmuir waves is unnecessary for this, but as we saw in section 7.2, prevention of convection of
the transverse wave is necessary. In order to make theoretical progress we assume, again, that once
localization effects on wave propagation are included, we can use averaged plasma properties to
compute coupling constants. We assume therefore that the Langmuir and transverse waves are
exponentially localized so that we may use a modified eikonal representation of the waves as fol-

lows:

= . —xpla—rpl
Er=Eré(k,x)e ™77 o 4o
=~ _xle—x | B
E =E e ™" %Y ¢ yrec

Then,

S@+ 5P = [a* ar [eL(k,_,x)ELz e 5 L Dy (kp, x) Ef 720!
+e5 (k) XY ES (x,1)
+;B J‘dj,\’df sin a(.\’)EL E; E; e—xfi.(-xrl d-x,_l.r—x,_l ei(@,_—OL—OS)

+cc




78

where

3
ng e
ﬁ:

mNkTM o} og

as determined in Appendix B. Again

~

k €7
Tk |

sina(x)=

where in this case it may be a function of position. Take variations

S d oe 2 =g bx—x |

o 0= 2 S Ele +iB sino(x)E, EfEg 7" 7%! gmretx=n! (7.3.1a)
L
ei(eL-er'es)+CC
TSZ__ (0= —:;—t g—z EZe = LB sina(x) E By Eg g7 "7 gmer! e (7.3.1b)
T

o O=0r=09)

é d Je . =~ meme g ix- —xplx—xr
6, " 0= Ea—wzss2 —iBsin0x)E, ErEge™ " b gmxrlx=ar (7.3.1¢)

el(ez.-Br-Gs) +cc

If we define the total wave action

Jo=[d3x 1B} | = =
A jd X1EQ | o= — o
Kp

aEL] e-—‘_’x,_lx—.q_I: lEL"l de

3D e _ \Er1? 3D
Jw 3 Jdw

KT

Jr=[d*x1E 12

e 1 e .
where we have assumed that _[d’xe xtel= — and therefore that the localization is isotropic.
K

Then

3
~ K[ JL —x lx—x1
E = L L
L= N Gedw) ¢
3
~ KT JT —-xrlx—=xrl
Er=AN @b °

and
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Since the ion-acoustic wave convects and is damped, we must retain the action density

ae.‘)‘ = 12
.’S(.Y)= m |E5|"

If we integrate 7.3.1a-c

i 1.9 Kl.s K% 3 . —xplx~x | —xplx—sxt
2= | 2P ’\/(aeL/aw)(aes/aw) (ODy/9w) Ja’x sina(x)cos p(x) e ¢

X aJ; Jrfs(x)} -nJL

3.3
i = KL KT 3 . —xplx—x | explx—xpl
2T | 2P '\/ (e,/0w) (9e5/dw) (3D /d) Jax sinatx)cos pix) e ¢

X alJy Jrfs(x)} -vrlr

ij (X)——- 2ﬂ 'J K'L3 K‘I:? Sin a(x)cos¢(x)e—x,;|x—.rbl e—x-,lx-.rrl
de (OE/0w) (OEs/dw) (9D7/dw)

xalJp JTJS('\')} = Ys Js(x)

As before, we consider the case where at ¢ =0, E; is large and Ey, E; are at fluctuation levels, so

that initially we can take E; a constant. Then we use the definition

i JL
Yo=8B .
(e, /Aw) (Ies/dw) (AD/dw)

With this definition y, will be of the same form as in section 7.1 where E; is now the peak value

of the electric field. Again we have

[% + y,] NI Al [dx {sin a(x)cos ¢ (x) e Tl Rl st(x)}

and

(‘% + ySJ NTs(x) = 1o A K sin a(x) cos ¢ (x) e " E Tt pRr Al ~[J—T
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Combining these gives

[5—! +yr) [% +y3] \/Z(x—)= k218 sin a(x)cos ¢ (x) e ' * ! prRrte !

{jdzx' sin a(x’) cos g (x*) ¢~ X! prrrlx =l «/.Is(x')}

Although we could attempt to integrate this numerically over assumed forms for the localized

waves, we can make some estimates as follows.
Experimentally, it appears that the envelope of the ion-acoustic wave is similar to that of the

Langmuir wave. Furthermore we assume

sina(x)~1 and cos¢(x)~1.

Therefore, we assume we can write

Jo(x)=x, T s(r) e " !

We make the WKB assumption

NTs(t)=e* «/.7_5

Then

(w+ YT) (w+ YS)= KE K73- 'Y(?)' [J’dzx e‘\‘le-le]

X [J‘d:;x e—’lx,_lx-x,_l e—rrlx-x-,-l]

|
Let us further assume that x7 <« k; and that | x, — x;1 «<< —. Then
Kt

2’CT 3 L)
(w+y)(o+y)= | —| %
KL

which gives us the requirement for positive growth that

5 KL ’
Yo > EPN Yrvys - . (7.3.2)
For the 11 March event

1 1 Tr ¥s
L Ky~ : ~25x107"; — -1
70 km 77 500 km © w, e g

K ~
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The instability requirement (7.3.2) is 3 >9x 107¥/sec?. The actual value of

18 = (1.8/sec)’ = 3.24/sec’ and we see that the instability threshold is exceeded by more than 3 ord-
ers of magnitude. The effects of phase decorrelations, etc., might be estimated at 1 to 2 orders of

magnitude.
The following considerations are of possible significance:

i) Because the Langmuir localization length is much less than a transverse wavelength, wave
number matching is not significant. We should merely have kg = 4;. On the other hand, fre-
quency matching is significant. It is necessary that the frequency mismatch be less than the
growth rate y,. The frequency matching will be determined by the frequency levels of local-

ized states.

ii)  Other than assuming that k7 is perpendicular to k;, we have not really considered the effects
of the 3-dimensionality of the problem. Although a one-dimensional model may be adequate
for the Langmuir waves, the wansverse wave is certainly a 3-dimensional problem, and the
localization length predictions from the 1-dimensional theory are ceﬁainly shorter than in real-
ity. Furthermore, the electromagnetic wave is a vector wave and consideration of the effects

of scattering on the wave polarization is important.
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8. Concluding Remarks

We have argued that wave localization effects can be important whenever a wave propagates
near the wave cut-off in a plasma with superimposed density turbulence. The effect of localization
will be to stop propagation and limit wave spreading to a velocity approximately that of the density
fluctuations. Furthermore, the confinement of the wave and possible daughter waves can change

the nature and threshold of plasma instabilities.

We have discussed beam-plasma interactions at length because this problem is easily treated
by one-dimensional simulations. The localization of Langmuir waves in itself would seem to be a
curiosity with litdle importance other than proving that density fluctuations do not suppress the
beam-plasma instability. On the other hand the localization of the transverse waves allows an ins-

tability to reach threshold which otherwise would not occur.

We have only simulated those parts of the problem amenable to a one-dimensional treatment.
To treat the full problem, including 3-wave decay and non-linear effect in even two dimensions, by
computer simulation would be very difficult. Because effects hapben on both electron and ion time
scales, a two component model of the background fluid would be needed, this leads unfortunately
to charge separation and noise for warm fluids. A large number of grid points would be needed
since the system needs to be lurge enough to include several electromagnetic wave wavelengths.
When beam particles are included one obtains a memory requirement of ~4x 10° words. This

would be prohibitively expensive in Cray time.

Although the existence of wavé localization in 3-dimensions is well established theoretically
for fixed scatterers, the problem of mobile scatterers in 3-dimensions is not settled. This problem
is amenable to study using an extension of the methods used in Chapter 5 on, say, a
100 x 100 x 100 lattice. In this case, only waves localized to a small number of lattice points could

be studied.

Within the context of the type III problem, the arguments we present are consistent with

observations at 1 AU. We make no claim as to their importance or validity in other regions, in the
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solar corona, for example, where strong turbulence effects may in fact be important. On the other
hand it seems improbable that if the solar wind is turbulent at 1 AU that is is not also turbulent in
other and perhaps all regions closer to the sun. In this case, localization will still occur for small
amplitude waves. For waves of large amplitude, strong turbulence effects including soliton forma-
tion and collapse are probably of more importance, although wave localization may cause a faster

onset of these processes.

A final word for those who would argue that wave localization is unnecessary for understand-
ing the behavior of the Langmuir waves. To a certain extent, we would agree. As the scale length,
L, of the shortest wavelength density fluctuations increases to the point that L 3 A;, semi-classical
or WKB techniques become valid. As McDonald (1983) showed, the closed, quantized trajectories
are of special significance. Since we are ultimately concerned with wave behavior, however, we
argue that one cannot just use ray trajectories and ignore quantization effects. This is the import of
the work by Bezzerides (1986), discussed in the introduction. Even if, because of particular aniso-
tropies in the turbulence, most trajectories are not trapped, some will be, and when closed and
quantized, lead to long-lived quasi-stationary states. Once the Langmuir waves are confined and
quantized, whether through localization or semi-classical effects, much of the discussion of Chapter
6 holds. Because of the length scales involved, the properties of the transverse waves can only be
understood through the properties of the full wave equation in random media, i.e., localization
theory, since dispersive effects are as important as refractive effects. The advantage of using local-
ization theory, on the other hand, is that one can be very ignorant about the turbulence involved

and still make very powerful statements about the consequences.
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Appendix A. Simulation Techniques and Code Listing

The simulation codes developed for this study are based on standard plasma simulation tech-
niques as discussed in Birdsall and Langdon (1985), which is the reference for the numerical tech-
niques discussed below, and some of the code is taken directly from the program ES1 by Bruce

Langdon.

For the localization studies we have used two programs, BEAMLOC, and PERLOC. BEAM-
LOC is used for the beam-plasma interaction, and is listed following this discussion. PERLOC was
used for the Gaussian wave packet propagation, and is similar to BEAMLOC except that the
unnecessary particle mover and field solver were eliminated, resulting in a very much faster run-
ning program.

In the remainder of this section we discuss BEAMLOC; however, the discussion of PERLOC,
suitably restricted, would be the same.

Our techniques for simulating the background plasma is to use a linearized one-fluid plasma.
Our rationale for this is the following.

In this problem we wish to simulate the effect of a very weak beam with physical density

ny

~107°. If we tried to use particles, in order to observe the fields that arrive from the beam
n
plasma

plasma interaction, we would certainly expect that the statistical fluctuations in the background den-

sity would be significantly less than the beam density.

Let n,=number of background simulation particles in the box Ax; n, = number of beam

simulation particles. The charge of a simulation particle is

m‘l
[1d

“T dx(elmin,

(e/m) is established by the particle type.

If we require that the fluctuations in the background particles produce fields significantly less

than those arising from the beam-plasma interaction, then
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E =fluctuating electric field

A = fluctuating density

=}
1n
ey

”
en, @ 1

Ey~—=—2 =
g k e/m

V E z4nen

~ ” 5

E, o o
Ze__ % J,,P

We require
EP«Eh
We get
w; A7, 51
Ax —
(e/m)n, (e/m) k

or

2
n, < (kAx)? —a’i ~10'°
Wy

It is quite impossible to use particles for the background in this case.

A further problem, which also restricts the ability to use a two-component fluid for the back-
ground is that since we have significant density gradients because of our fluctuating background
fields, we will get strong electric fields due to charge separation unless we have Ar<«A,. How-
ever, for our problems we want to follow several hundred wavelengths and want 100 Debye lengths

per wavelength. In order to satisfy all of this, we should then require > 10° grid points.

By using the equation of motion

92w 2 2 821}/
= -2 (x)y + 32 LY
a2 P (X3 ox*

for the turbulent background plasma we gain in simulation quietness and isolation of the effect we

are interested in (the effect of density fluctuation on wave propagation). On the other hand, we
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completely eliminate any etfects which are non-linear in the background plasma. This could be

significant since the density fluctuations are large.

SPERLOC uses the following equations. We assume a grid with n, + 1 grid points, equally

spaced over a length L giving Ax= —1—'—. Quantities defined on the grid are advanced by time steps
n
4
At.
The equations of motion we solve are:
Particles:
d’x,
L= £ E(x)
dt- m
Mream (X11) = D, 8(x = x,(1))
Fluid:

Define y(x,t)=-3{n(x,t) - n;(x,t)]

azw 2 2 azl[l
=-—w,(x)y+3v; —-
o - ROV IIES

N drn; (x)e?
where w;(x) = ——
mt

Field:
V.-E =4np where p=—eny,,+ V¥

Initial conditions:

y(x,0)=0
9V (. 0)=0
ot
1, . on(x) . . .
w;(x)=| £ ——| where dn(x) is a randomly distributed variable
no

x,{¢t =0) is uniformly distributed in space

v, (1 =0) =drifung maxwellian distribution
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We use a time centered leap-frog scheme to solve these equations. We define the quantities:

'.'+|/2 =

vj % v; (¢ = (n+2)At) the velocity for the jth particle

by O (o= jaxi 1= (n+ VAN

x!=x,(t = nAt) the position of the jth particle

v;=w(x=jAx; t = nAt)

S PO
W, = w,(x=iAx)

We first solve for the electric fields in Fourier space from the following.

Pl= i+ Ploecam
A-E'=4mp]

and then advance quantities in time:

Ve _ —ejAt

Vi

n n=¥2
Elq v
mj ’

. Vs ) n 2 At- n ) )
Wit = A [“":i ["'i‘V:7+Pbcnmi]] +3v; ZYT [‘I’.’"ﬂ +yil —2y; ] +

Wit =yl 4 Ar gt

A=A
We then find p/*!, then E*' and so on. The advantages of a time centered leap-frog scheme to
solve differential equations which are 2nd order in time is that the solutions are of accuracy 0 (At?).

Plots:

~¥a

In addition to plotting the quantities w;" and y'~"" we are also interested in the ‘‘energy den-

12}

sity,”” which we define as

YA (Vi1 ~wi ]2
of i+ g 1o WiVl

El=
: 2 2 4ax°

1
2
This is the Hamiltonian density which will generate the equations of motion for w and y. Plotting

this has the advantage that the quantity is phase independent, unlike v and .
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Model for background density fluctuations

In most cases the model we use for density fluctuations is that of Escande and Souillard,

which is that wpz(x) is a step function, constant on a specified number of gridpoints, n., which is 4,
8, or 16 in most of the simulations presented. The value at each step is generated by a random

number generator and is uniform on the interval.

-8 , 1+5a} 1.
We show the power spectrum of density fluctuations in this model in Figure B.2. In this
figure I =314, n,=512. According to this,
6 - Ld ikxa ( )_ "2 i(kl:j)s jlﬁ ihd iklJ2
nk—-[o x e nx)= ) e n; y e dxe

2
j=0

This gives

n ia2
, L sin® kl /2
16m2= | Y * 0% on | 412 | S
ji'=0 (ki12)

For moderate %, the sum vanishes unless j = j* and so

o | sin® kL2
l6nkll—>21;6nj'|: ]
J

(k1 /2y

As k — 0 however,
|5nk|2—) [ZSHI} {an/] EO
j i’

The peak occurs for ki .= .55 [;‘:—7— X 1007:] =1.227 and decreases approximately as k=2 up

to kl.=2n. The detailed structure, however, is of course a specific manifestation of the statistics of

the ensemble, since the sample is finite, and it is this that gives rise to the localization.
Notes on units:

We use the following convention for units in this program. We choose units of time so that
the background plasma frequency w, =1. We choose units of mass so that e/m=1. Once we

specity the number of simulation particles n.,, in a box of length Ax, we have set the charge of a
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beam particle

2

wp beam

= dr(eim) noun -

Typically we take

”
w-bcu nbe -
—pxRm . PR _9gx107°

2 ng,
wphl 8

As it is, we find that 4,096 grid points is the largest number necessary, and 8,192 particles
gives us two simulation particles per grid point.

v
A typical length of the system is L ~314, and v, ~.05. With w,=1, Ap = —w;= 05. With
P

n,=4,096 the number of gridpoints, we have Ax/Ap=1.5. As none of the physics of our simula-
tion relies on being able to resolve a Debye length this is sufficient. Also a typical beam velocity

will be v, =1.0. Then

w 2r A
ko=—2=10 1~ 5=628 L2 =82,
0 Vh kO Ax

therefore a typical wavelength is very well resolved.

The typical CRAY run time for BEAMLOC with n, =4,096, ny,, = 8,192, n, =4,000 was 10

minutes. The typical run time for PERLOC with n, =4,096, n, = 80,000 was 4 minutes.
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Appendix B. Computation of the 3-Wave Coupling Constant

In this appendix we calculate the 3-wave coupling constant between a Langmuir wave, an

jon-acoustic wave and a transverse electromagnetic wave, used in Chapter 7. We begin with

eq. 7.1.1,
K(3’=%L2 HO 4 LH® (B.1)
In this particular case we note that LH® will contain no term of the form ' ®=%%) gince

H® ~ 1412 and the only wave with non-vanishing A in our choice of gauge is the transverse wave.

Let us write

e; ~ ;
HO = Z —— P, A% (x.1) o'%tx0)
@ m;c

i :

where « is a wave index and H{"V=[HV]" (complex conjugate), and where we have defined the

‘‘non-relativistic’’ 4-vectors

A = (0, Ar) for the transverse wave
A = (¢4, 0) for the ion-acoustic or Langmuir waves

and p; =(m;c, m; v;).

H,
Then w, = [dt H{" = ==
17]

194

where 6, = k,v; - ®,. Eq. B.l becomes

K3 = ‘:13— 2 {w, [w,H‘il)} }
If we use the Vlasov approximation
fxp)=3 8 (x=x)8(p-p)

then

ZJ:]dt % (w,, {w, HO) } = ZJ:'dt [a*xa® T8 (x=x)8 (p—p,) {w, (w, HOY }

=-[d’xdr d’p nog(p)% {w, {w, kD))



Integration by parts gives

K= 3 [dxdpnow, g @)} {w, H)

-1 3. 43 ow dg M
_3ZId.\dpno[a£ 3 {w,HD} .

[+ 4

If g(p) is a Maxwellian distribution, then

dg __p
-2 = P
oy mur &6
and we find
| ng ow
3y L d3) 4 — 5. ,H“)
S 3§I vdrd’pe(p) mkT P " x tw, Ha')
We take
H,
w= e
25

which gives
Bw Ha
T = — (k-
P S =T k)

g fin)-g

1 1
— {H,  Hg} + H, {—, Hy}
ap 16, aff i0 p * i0 P

a (-4

Combining the above gives

1
mkT i6g i6y

o @

H,
K(3)=-;—J‘d3xd3p—no—gﬂ [Z —é.—(ka-p)} [2 [-_.L-{HB,HYH-H[,(—,HY}

Now, we note that for v, > vr,

v
a)L—IcL-\'Ea),_ 1-— =Wy
Vp

w7 —kr-v=wp since ky K kg

-and we assume that we may use wg —~ ksv ~ —ks - v when integrated over the thermal distribution.
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We write K, 57, to represent the sum over all permutations of oy where one of the waves is

a Langmuir wave, one ion-acoustic, and one transverse.
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1 nog(p) | &° (~ ~.~.) (8, = 8 ~
3y L343 € (8, =85~ 6r)
K5 = 3 jd xd’p kT (mc pLosAT| e -

)

ks-p | kp-€r  p-Eplky -kr) (kr -pY (kg ks) [ 1 1
: - + + - —+
65 of

65 6L né; 6r
——

k; - ko - & -Ep) ks - k kr - ke - & kr -k
+L'P s.r+(P1)sr+L'P D O

BL eS mész 9!. 91- mé%

ks - k; - € € ky -k

+S.P.L‘T+p T (ky ~kny
05 or m 8
| U

2
T
Since k;, =kg and 8, =0r> 85, the underlined terms are approximately equal and are dominant,

cancelling the % If we define

then

nog(P) e » ~e«~u i(8,-85-6r)

$O = [dt dxd’psina o o5 Are +c.c.
no e3 ks . ~ e~ (8 -0g=0r)
= [dt d’x — | —| — sina A L=%=% e,
j kT [mc] ay PrésAre

We evaluate the quantity B defined as

3) k
B = Jo [—e—] — sina

kT | mc | of
as follows:
Noting that
~ - o -~
Er=i —aiATEi ‘—LAT
c c
Es=iks9s
E =ik o,
and using the definitions
VEZ )
L= Ll e _ 1E 12—
ir Jw @y
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VEl? 3¢ 12260,-2
ar dw 3

S=
w3

where we have used the standard expression for the dielectric response functions €; and ;. Then

we find
2
~a~w o osEf
Ay = «]J ——————— sin
BoLosAr sJr L67 ng kT in o
The factor
_ Wy Ws ELZ
Yo = A T6x ngkT

is the same as that derived by Shukla and Yu (1983) using fluid equations. We can also write 3 in

the form
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Plasma, Beam, and Wave Parameters
for 11 March 1979. (from Lin et.

al., 1986)

Solar wind plasma

Solar wind density, n
Solar wind velocity, V,,
Angle of magnetic field
to solar wind, fp
Electron temperature, T,
Ion temperature, T;
Debye length, A\p
Electron plasma frequency, f,_

Ion plasma frequency, f, 4

Fast clectrons

Beam velocity, v,
Beam density, n,
Positive slope, 3 f/0v ;l
Beam width, Av; /v,

Langmuir pump waves

Beam resonant wave number, kg

Maximum wave amplitude, £ O

Maximum normalized energy

density, W = EJ /87n kT,

Long wavelength ion acoustic waves

Wave number, k; (typical)
Ion acoustic speed, ¢,
Ion acoustic frequency, f;

Maximum electric field, Ey

Table 2.1

2 em™

480 km/s

139°
2x10°*' K
4x10*°'K
2.2X10° cm
13 kHz
3%x10° Hz

~3.5%X10° cm/s
~7X10° ¢m™
~107% cm §?

~0.1-0.2

2.3%10° cm™
~1 mV/m

8% 1077

1.8X107° cm™!
5.2X10°% cm/s
15 Hz

~40 uV/m
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electric field measurements
(from Lin et. al., 1986)
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Figure 6.11 E vs. t
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